
Revisiting the Constant-sum Winternitz
One-time Signature with Applications to

SPHINCS+ and XMSS

Kaiyi Zhang1[0000−0002−2294−3523], Hongrui Cui1[0000−0002−6203−413X], and
Yu Yu1,2[0000−0002−9278−4521]

1 Department of Computer Science, Shanghai Jiao Tong University, 200240 Shanghai
{kzoacn,rickfreeman}@sjtu.edu.cn

2 Shanghai Qizhi Institute, 200232 Shanghai yuyu@yuyu.hk

Abstract. Hash-based signatures offer a conservative alternative to post-
quantum signatures with arguably better-understood security than other
post-quantum candidates.
As a core building block of hash-based signatures, the efficiency of one-
time signature (OTS) largely dominates that of hash-based signatures.
The WOTS+ signature scheme (Africacrypt 2013) is the current state-of-
the-art OTS adopted by the signature schemes standardized by NIST—
XMSS, LMS and SPHINCS+.
A natural question is whether there is (and how much) room left for im-
proving one-time signatures (and thus standard hash-based signatures).
In this paper, we show that WOTS+ one-time signature, when adopt-
ing the constant-sum encoding scheme (Bos and Chaum, Crypto 1992),
is size-optimal not only under Winternitz’s OTS framework, but also
among all tree-based OTS designs. Moreover, we point out a flaw in the
DAG-based OTS design previously shown to be size-optimal at Asiacrypt
1996, which makes the constant-sumWOTS+ the most size-efficient OTS
to the best of our knowledge. Finally, we evaluate the performance of
constant-sum WOTS+ integrated into the SPHINCS+ (CCS 2019) and
XMSS (PQC 2011) signature schemes which exhibits certain degrees of
improvement in both signing time and signature size.

Keywords: Hash-Based Signature, Post-Quantum Cryptography, SPHINCS+

1 Introduction

Hash-based signatures are one of the most promising candidates for (and perhaps
the most conservative approach to) post-quantum digital signatures. An advan-
tage of hash-based signatures is that its (classical as well as quantum) security
strength is better understood (and easier to evaluate) than other candidates, by
solely relying on the idealized hardness3 of the cryptographic hash functions.

3 The design philosophy of symmetric primitives (including hash functions) is that
they should only admit generic attacks, otherwise the design is considered to be
flawed.

Lamport [28] and Rabin [36] proposed the first one-time signature (OTS)
schemes that can be efficiently built from one-way functions (aka. the minimal
assumption). The design was later made more efficient by Winternitz [30], Bos
and Chaum [9], Vaudenay [41], and Hülsing’s WOTS+ scheme [22], which is the
current state of the art. The subsequent work often adopts more complicated
structures, and typically relies on hash functions with stronger assumptions.

Another line of works extend OTS to full-fledged signatures capable of sign-
ing multiple messages. In the context of hash-based signatures, the goals can be
divided into stateful signatures and stateless ones, depending on whether or not
the signer needs a state to keep track of signed messages. As far as stateful signa-
tures are concerned, Merkle first proposed to sign multiple messages via a binary
hash tree [31]. Merkle’s original proposal was improved and optimized to become
the eXtended Merkle Signature Scheme (XMSS) [23] and the Leighton-Micali
Signature (LMS) [29], which are standardized by NIST [10] and IETF. As for
stateless hash-based signatures, Goldreich proposed the first stateless construc-
tion [16,17], which removes the need for maintaining a local state but results
in prohibitively large signatures. SPHINCS [4] offers a practical instantiation
of the Goldreich-style stateless hash-based signature and serves as a basis for
subsequent works, including Gravity-SPHINCS [2], SPHINCS-Simpira [18], and
SPHINCS+ [5]. Recently, SPHINCS+ was selected as future standard signatures
by the NIST PQC standardization process [39].

WOTS+ and hash-based signatures. The hash-based signatures to be stan-
dardized by NIST [5,23,29], whether stateless or stateful, all extensively rely on
and invoke many times the WOTS+ one-time signature as an important under-
lying building block. Therefore, improving the efficiency of WOTS+ will bring
about a corresponding increase in the resulting hash-based signature.

How WOTS+ encodes its message. A line of works [9,11,34,26] focused on
optimizing the message encoding scheme of the WOTS+ in order to build more
efficient OTS. The encoding problem in the Winternitz’s OTS framework can be
informally summarized as: every message m parsed as the base-w representation

m = (m1, . . . ,ml1) ∈M ⊆ [w]l1 , where [w]
def
= {0, 1, . . . , w− 1}, should be injec-

tively mapped into codeword (c1, . . . , cl1+l2) ∈ C ⊆ [w]l1+l2 such that there exist
no distinct (c1, . . . , cl1+l2), (c

′
1, . . . , c

′
l1+l2

) ∈ C satisfying ∀i ∈ {1, . . . , l1+l2}:ci ≤
c′i. Otherwise, it leads to a trivial forgery attack on the OTS scheme. Note that
the encoding rate (1+ l2/l1) translates to the average signature size per message
bit4. The current WOTS+ scheme [22] adopts a simple yet efficient encoding
scheme by simply appending a checksum to the message, i.e., fix message space
M = [w]l1 and let the encoding be (m1, . . . ,ml1) 7→ (m1, . . . ,ml1 , c), where

the checksum c =
∑l1

i=1(w − 1 − mi) is represented in base-w as well. A nat-
ural idea to improve the encoding rate is to choose only those m with a fixed

4 In fact, the average number of hash function evaluations during KeyGen is (w− 1) ·
(1 + l2/l1) (which is equal to the total number of hash function evaluations during
Sign and Verify), and therefore the encoding rate is also related to computational
efficiency, which is consistent with the experimental results in Sect. 5.

2

(constant) checksum value c (so that c doesn’t need to appear in the codeword

explicitly), i.e., let C = {(m1, . . . ,ml) ∈ [w]l :
∑l

i=1 mi = s} ⊆ [w]l and con-
struct an efficient encoding algorithm Enc :M→ C, where the message space is

maximized when s = ⌊ l(w−1)
2 ⌋ (among all possible values for s). This encoding

is referred to as the constant-sum encoding. Bos and Chaum [9] first proposed
the constant-sum encoding in the binary setting (i.e., w = 2). Vaudenay [41]
extended it to the arbitrary w setting but did not give an explicit encoding
algorithm. Curz et al. [11] proposed a probabilistic encoding algorithm. More
recently, Perin et al. [34] introduced an efficient deterministic encoding algo-
rithm. Kudinov et al. [26] introduce an efficient encoding method (via rejection
sampling) for constant-sum encoding, and integrated it into the SPHINCS+ al-
gorithm to achieve performance improvement.

Motivation. It is therefore natural to ask the following questions in the pursuit
of more efficient digital signatures or in order to avoid further futile efforts.

Question 1: Does the constant-sum encoding already achieve the optimal en-
coding rate or is there a better encoding scheme in the WOTS+ framework?

Question 2: Are there OTS schemes with better signature size and computational
efficiency in a more general framework?

Our contributions. We answer the first question affirmatively, and provide
both positive and negative results for the second one.

– For Question 1, we show that the constant-sum encoding achieves the opti-
mal encoding rate among all encoding schemes in the Winternitz-style OTS
framework. Following previous observation [6], we show this by first inter-
preting the problem of maximizing the message space (for fixed-length code-
words) as an order-theoretic problem of finding the largest anti-chain in the
induced partially ordered set. Then, using Dilworth’s theorem, we show that
the anti-chain size is maximized when the elements sums to half of the max-
imally allowable value, which corresponds to the constant-sum encoding.

– For Question 2, we first show that the DAG-based OTS design previously
considered asymptotically optimal [7,13] contains a security flaw, which
may lead to trivial forgery attacks. On the positive side, we show that the
constant-sum WOTS+ maximizes message space among all tree-based OTS
schemes. We prove this result by adapting the technique of Bleichenbacher
and Maurer [8] in the binary tree setting to the arbitrary tree structure.

We conclude that the constant-sum WOTS+ scheme not only achieves optimal
encoding rate in the WOTS+ framework, it also maximizes the message space
among all tree-based OTS schemes. Further, after refuting the DAG-based de-
signs [7,21,13] we’re not aware of any other more size-efficient DAG-based design.

On the practical side, we replace the WOTS+ component in SPHINCS+ and
XMSS with constant-sum WOTS+, and evaluate the corresponding performance
improvement5. For SPHINCS+, by carefully adjusting the parameters, the re-
sulting stateless signature scheme exhibits up to 12.4% reduction in signature

3

size compared to the size-optimized variant of SPHINCS+ at the 128-bit security
level. We note that our experiment takes into account the fix [24] of the latest
attack [27]. For XMSS, we simply change the encoding scheme to constant-sum
while keeping the original parameter sets, which results in up to 1.78% reduction
in signature size.

2 Preliminary

In this section, we define the notations, provide some basic background of order
theory, and recall some previous constructions in the literature.

2.1 Notations

We use [w]
def
= {0, 1, . . . , w − 1} for w ∈ N+. We denote the i-th element of a

vector v by vi. By log(x) we refer to the binary logarithm, i.e., log2(x). We
denote the concatenation of strings (vectors) a and b by a∥b or (a, b). For a set
S, we denote the size of S and the power set of S by |S| and P (S) respectively.
We let λ be the security parameter, and refer to a λ-bit value as a block. Let
H : {0, 1}∗ → {0, 1}∗ be a hash function.

2.2 Preliminaries of Order Theory

Definition 1 (Poset). A poset (S,≤) consists of a set S together with an anti-
symmetric, transitive and reflexive binary relation ‘≤’, according to which certain
pairs (x, y) ∈ S are comparable (x ≤ y or y ≤ x).

Note that a poset does not require all pairs in S to be comparable, and thus it
is also known as a partially ordered set.

Definition 2 ((Anti)chain and decomposition). A chain (resp., antichain)
refers to a subset of a poset, for which every pair of elements is comparable
(resp., incomparable). A chain decomposition is a partition of a poset into dis-
joint chains.

Theorem 1 (Dilworth’s theorem [12]). For any finite poset S, the size of
S’s maximum antichain equals the size of S’s minimum chain decomposition.

5 We dub the optimized SPHINCS+ scheme as SPHINCS-α, and a self-contained de-
scription of that hash-based signature is available in [45]. We stress that focus of
this paper is one-time signatures and thus we do not include the additional details
of SPHINCS-α other than the OTS component in this paper.

4

2.3 Hash-based One-time Signature

Here we recall the original construction of one-time signature by Lamport [28]
and various optimizations that leads to the currently widely used WOTS+

scheme [22].

Lamport One-Time Signature. Suppose the length of the message is λ, we
describe the Lamport signature scheme as follows:

– KeyGen: On input 1λ, for each i ∈ {1, . . . , λ} choose two uniform strings
xi,0, xi,1 ← {0, 1}λ and compute yi,0 = H(xi,0), yi,1 = H(xi,1). Define the
public key as pk := {(yi,0, yi,1)}i∈[1,λ] and private key as sk := {(xi,0, xi,1)}i∈[1,λ].

– Sign: On input a private key sk and a message m ∈ {0, 1}λ. Interpret m
as a string of base-2 values (m1,m2, . . . ,mλ). Output the signature σ =
(x1,m1 , . . . , xλ,mλ

).
– Verify: On input a public key pk, a message m ∈ {0, 1}λ and a signature

σ = (x1, x2, . . . , xλ), output 1 iff H(xi) = yi,mi for all i ∈ [λ].

The above scheme can be proved secure if H is a one-way function [17]. Nev-
ertheless, it can only sign one message since given two signatures an adversary
can forge a new signature by reordering those preimage of hash values.

From OTS to General Signature. To enable signing multiple messages (of
length λ), Goldreich [16] proposes to use a binary tree of depth λ where each
node is associated with an OTS public/secret key pair and authenticates the
public keys of its children nodes. Therefore, every message in {0, 1}λ can be
signed by a unique OTS public key on the corresponding leaf node.

Nevertheless, generating this tree takes exponential time. Instead we use a
pseudorandom function to generate it “on-the-fly”. That is, we use a pseudo-
random function to compress all the randomness of the tree. To sign a message
m ∈ {0, 1}λ, the signer computes the path from root to a leaf corresponding to
the binary representation of m. For each node u in the path, the signer gener-
ate the node and its two children u0, u1 and add σu = Sign(sku, pku0||pku1) to
the final signature. To verify the signature, the verifier checks that each node
except the root is correctly signed by its parent and the path corresponds to the
message m.

Improved OTS from Sperner Family. In Lamport’s OTS scheme signing
a λ-bit message takes λ hash blocks but message space can be enlarged in the
following way. Briefly speaking, the Sperner family is defined by S = {S : S ⊆
[n] ∧ |S| = ⌊n/2⌋}. It has some properties:

– |S| =
(

n
⌊n/2⌋

)
.

– It is (one of) the largest family in which no set contains any other set (in
this family).

Let n be the smallest integer such that
(

n
⌊n/2⌋

)
≥ 2λ. Informally, the second

property ensures that given any valid signature, it is computationally infeasible
for any adversary to forge a new valid signature since signature patterns do not
cover each other. We describe this improved OTS scheme below:

5

– KeyGen: On input 1λ, for each i ∈ [n] choose a uniform string xi ∈ {0, 1}λ
and compute yi = H(xi). The public key and secret key are defined similar
to Lamport OTS.

– Sign: On input a private key sk and a message m ∈ {0, 1}λ. Encode m into
S ∈ S, output the signature σ = {xi}i∈S .

– Verify: On input a public key pk, a message m ∈ {0, 1}λ and a signature σ,
output 1 if H(xi) = yi for all i ∈ S.

Looking ahead to Sect. 3, we will see this encoding method is a special case
of the constant-sum encoding method (for w = 2), where we show that the
more general scheme achieves maximum message space, and provide an efficient
encoding algorithm.

Winternitz One-Time Signature. Denote w as the Winternitz parameter.
Let l be the number of blocks in an uncompressed WOTS+ private key, public
key, and signature, where

l = l1 + l2, l1 =

⌈
λ

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1 .

Let Ha(x)
def
= H(Ha−1(x)) and H0(x) = x. We present WOTS+ as follows:

– KeyGen: On input 1λ, for each i ∈ {1, ..., l} choose a uniform string xi ∈
{0, 1}λ and compute yi = Hw−1(xi). Define the public key and private key
as pk := H(y1, . . . , yl) and sk := {xi}i∈[1,l].

– Sign: On input a private key sk and a message m ∈ {0, 1}λ. Encode m
into its base-w representation (m1, . . . ,ml1). Then compute the checksum

c =
∑l1

i=1(w − 1 −mi) and represent c in base-w as (c1, . . . , cl2). Let M =
(m1, . . . ,ml1 , c1, . . . , cl2). For each i ∈ [l] output the signature σi = HMi(xi).

– Verify: On input a public key pk, a message m ∈ {0, 1}λ and a signature σ,
output 1 if H(Hw−1−M1(σ1), . . . ,H

w−1−Ml(σl)) = pk.

The reason that the WOTS+ (as well as other Winternitz-type OTS) scheme
introduces the checksum is that in absence of the checksum the adversary can
efficiently forge signatures given a single pair of valid message signature. That is,
given (σ,m) he forges any m′ satisfying ∀i,mi ≤ m′

i by computing Hm′
i(ski) =

Hm′
i−mi

(
Hmi(ski)

)
.

The checksum addresses the issue: an increase in any mi leads to decreasing
at least one ci (recall c =

∑l1
i=1(w − 1 −mi)). Therefore, the adversary cannot

forge any (m′, c′) simultaneously satisfying both mi ≤ m′
i and ci ≤ c′i for i ∈ [l].

3 Constant-sum WOTS+

In this section, we recall the constant-sum encoding scheme, and prove the size
optimality of constant-sum in WOTS+ using order theory.

6

3.1 Size-optimal Encoding

More formally, the problem of constructing one-time signature reduces to that of
building an efficient encoding scheme Enc :M→ C ⊆ [w]l for some incomparable
codeword set C (see Definition 3). In case of WOTS+, the encoding function Enc
simply appends the checksum to the original message. Note that WOTS+ fixes
the size of the message to l1 (i.e., M = [w]ll) and then constructs as small
codewords as possible (minimizing l − l1).

Definition 3 ((In)comparability). For c, c′ ∈ [w]l, we denote by c ≤ c′ if for
every i ∈ [l] we have ci ≤ c′i. If c ≤ c′ or c′ ≤ c we say that c and c′ comparable,
or otherwise they are incomparable. A set S ⊆ [w]l is said to be incomparable
(or called an “antichain” in order theory terminology) if any two elements of S
are incomparable.

We take a slightly different approach to encoding the messages. That is, we
first fix the size of the codewords to l, C ⊆ [w]l, and strive to accommodate as
large message spaceM as possible. Given that Enc is an injection it is essentially
to maximize the size of C ⊆ [w]l. A natural approach is to encode the codewords
such that all elements of every codeword sum to the same value, and therefore
the checksum is not explicitly needed.

Theorem 2 ([9,41]). For any s ∈ [l(w− 1)+1], Cs
def
= {c ∈ [w]l :

∑l
i=1 ci = s}

is incomparable.

Proof: Suppose towards contradiction that Cs (for some fixed s ∈ [l(w−1)+1])
is not incomparable, then there exist distinct c, c′ ∈ Cs s.t. c ≤ c′. There must
be an index j such that cj < c′j (otherwise c = c′). However, due to equal sum∑

i ci =
∑

i c
′
i we have

∑
1≤i≤l∧i ̸=j(ci − c′i) > 0, and there must exist some

1 ≤ k ≤ l such that ck > c′k, which is a contradiction to c ≤ c′.

Every Cs gives an encoding scheme but with different size. For s = 0 or
s = l(w− 1), Cs consists of only a single codeword. We argue that the size of Cs
reaches its maximal in the middle, i.e., when s = ⌊ l(w−1)

2 ⌋. One easily verifies

that this holds in the binary case (i.e., w = 2) where |Cs| =
(
l
s

)
. We note that

this encoding method appears previously in the literature [9,41], and Perin et

al. [34] proved that |Cs| reaches its maximum when s = ⌊ l(w−1)
2 ⌋. But to the

best of our knowledge, we are the first to present a size-optimality proof over all
encoding schemes in WOTS+. In particular, we prove in Theorem 3 that the size

of Cs, when s = ⌊ l(w−1)
2 ⌋, is not only the largest in all Cs for s ∈ [l(w − 1) + 1]

but the largest among all valid sets of codewords.

Theorem 3 (Size-optimal encoding). For every incomparable C∗ ∈ P ([w]l),
it holds that

|C∗| ≤ |C⌊ l(w−1)
2 ⌋| .

We defer its proof to Theorem 4, which rephrases Theorem 3 in the language of
order theory. Prior to that, we discuss how to compute |Cs| by recursion, and give

7

an explicit construction of encoding messages into Cs for s = ⌊ l(w−1)
2 ⌋. Hereafter,

we denote such Cs with maximal size by C for brevity.

Counting the size. Now we need to figure out the size of C. As a special case,
|C| =

(
l

⌊l/2⌋
)
when w = 2. Fix w, let

Dl,s = |{c ∈ [w]l :

l∑
i=1

ci = s}| ,

we have their initial values

D0,0 = 1,

D0,s = 0, for s ∈ {1, 2, . . . , w − 1}
Dl,s = 0, for 1 ≤ l ∈ Z, s ∈ Z− ,

and recurrence relation

Dl,s =

w−1∑
i=0

Dl−1,s−i, 2 ≤ l ∈ Z, s ∈ {0, 1, . . . , l(w − 1)} .

Note when w = 2, this method is equivalent to recurrence relation of binomial
coefficient, i.e.,

(
l
s

)
=

(
l−1
s−1

)
+
(
l−1
s

)
.

Let us explain the recurrence relation. To compute Dl,s, consider the value
of its last summand, which could be any value in {0, 1, . . . , w − 1}. If this value
is set to i, the sum of the first l− 1 elements must be s− i. Therefore, we notice
that the problem “l elements with sum to s” into those “l−1 elements with sum
to s − i”. Thus we can simply count Dl,s by accumulating Dl−1,s−i. Following
this method, Dl,⌊l(w−1)/2⌋ gives the size of C.

We note that Dl,s is also the s-th coefficient of (1+x+x2+ · · ·+xw−1)l. Eu-
ler [15] has studied w = 3, 4, 5, known as trinomial, quadrinomial and quintino-
mial coefficients respectively. The generalized form was studied in the literature,
e.g., [1,42,3]. Actually, we can use an inclusion-exclusion argument to express it
as a function of binomial coefficients [43]

Dl,s =

⌊s/w⌋∑
i=0

(−1)i
(
l

i

)(
s+ l − iw − 1

l − 1

)
.

The encoding algorithm. Now we make the construction explicit by giving
an efficient encoding algorithm6, which maps a message x ∈ [|C|] into an element
in C. We give the pseudocode of the encoding procedure in Algorithm 1.

Let us explain the encoding algorithm. As previously stated, the problem can
be divided into several sub-problems by considering the value of the first element

6 We note that a similar algorithm was previously proposed by Perin et al. [34] and we
stress that the encoding algorithm is included for the sole purpose of completeness
and it is not considered as part of our contributions.

8

Algorithm 1: Encode:[|C|]→ C.
Function Encode(x)

Let v be an array of size l;
m← ⌊l(w − 1)/2⌋;
for i← l . . . 1 do

for j ← 0 . . . min(w − 1,m) do
if x ≥ Di−1,s−j then

x← x−Di−1,s−j ;

else
vl−i ← j;
break;

m← m− vl−i;

return v;

vl−i. To encode a natural number x ∈ [0, Di,m), we can simply determine vl−i = j
by seeking which j satisfies x ∈ [

∑
k<j Di−1,m−k,

∑
k≤j Di−1,m−k). Once the

value of vl−i is determined, we proceed to the next terms until all elements are
decided.

Now prove the encoding-rate optimality of the constant-sum scheme using
order theory (recalled in Sect. 2.2), which has been shown to be closely related
to the design of one-time signatures [6].

Theorem 4. Let Sl = ([w]l,≤) be a finite poset and C := {c ∈ Sl|
∑l

i=1 ci =
⌊l(w − 1)/2⌋. Then C is the maximum antichain in Sl.

Proof: According to Dilworth’s theorem, we can prove that C is the maximum
antichain of Sl by arguing that (1) C is an antichain and (2) we can find a chain
decomposition whose size equals to |C|. We have proved that C is an antichain
in Theorem 2. It remains to construct the chain decomposition of size |C| as
follows. Our proof can be viewed as a generalization of the proof of Sperner’s
theorem [38], which considers the special case for w = 2.

Consider poset Sl = ([w]l,≤), and we denote its element by c := (c1, ..., cl) ∈
[w]l and differentiate different elements using superscript. We slightly abuse the

notation by |(c1, ..., cn)|
def
= c1 + ...+ cn.

We construct the chain decomposition for Sl by induction, where every chain
c1 ≤ . . . ≤ ct satisfies the following two properties:

– |ci+1| = |ci|+ 1,∀i ∈ {1, 2, . . . , t− 1},
– |c1|+ |ct| = l · (w − 1).

The case for l = 1 is trivial, i.e., D1,⌊(w−1)/2⌋ = 1, which corresponds to the
chain (0) ≤ (1) ≤ . . . ≤ (w − 1).

Assume that we have a chain decomposition for Sl−1 satisfying the above two
properties, we proceed to the construction of a chain decomposition for Sl. By

9

the inductive assumption we have the chain decomposition for Sl−1 satisfying
the two properties. For any chain c1 ≤ c2 ≤ . . . ≤ ct from the aforementioned
decomposition of Sl−1, we build k+1 chains for Sl as follows, where k = min(w−
1, t− 1). That is, for every j ∈ {0, ..., k} the j-th chain consists of:

(c1, j) ≤ . . . ≤ (ct−j , j) ≤ (ct−j , j + 1) ≤ ... ≤ (ct−j , w − 1) .

This yields the k + 1 chains as shown in Fig. 1.

(c1, 0) ≤ ≤ (ct, 0) ≤ . . . ≤ (ct, w − 1)
...

.
.

...
(c1, k) ≤ . . . ≤ (ct−k, k) ≤ ≤ (ct−k, w − 1)

Fig. 1. A demonstration of how a chain from Sl−1 is expanded into k+1 chains for Sl,
where every row is an expanded chain. Note that it is not a rectangular matrix (every
row has two less elements than the previous).

It is easy to verify that |(c1, j)| + |(ct−j , w − 1)| = |(c1, 0)| + j + |(ct, 0)| −
j + (w − 1) = l(w − 1), and every subsequent element increase the sum value
of its predecessor by one. Namely, the two properties are preserved for all the
constructed chains of Sn.

It remains to argue that all the chains constructed (from the decomposed
chains of Sl−1) constitute a partition of Sl := [w]l. That is, for every ci ∈ Sl−1,
each of its augmented elements (ci, 0), ..., (ci, w − 1) appears in the constructed
chains exactly once. Note that every ci belongs to exactly one of the decomposed
chains of Sl−1, say c1 ≤ . . . ≤ ct. We discuss the following cases.

Case t ≤ w. We have k = t − 1 ≤ w − 1. Viewing the elements in Fig. 1 as a
matrix by filling the lower right corner with zeros, we have [(ci, 0), . . . , (ci, k +
1 − i)] appears as the first (k + 2 − i) elements of the i-th column, and then
[(ci, k + 1 − i), . . . , (ci, w − 1)]T as the last (w + i − k − 1) elements of the
(k + 2− i)-th row.
Case t > w. We have k = w−1 < t−1. If 1 ≤ i ≤ t−w+1, then [(ci, 0), ..., (ci, w−
1)] appears as the i-th column in Fig. 1. Otherwise, it holds that t−w+1 < i ≤ t.
[(ci, 0), . . . , (ci, t− i)] and [(ci, t− i), . . . , (ci, w − 1)]T are the first t− i+ 1 ele-
ments of the i-th column, and the last (w + i− t) elements of the (t− i+ 1)-th
row respectively.

Therefore, we have shown that for every c ∈ [w]n−1, (c, 0), . . .,(c, w−1) appears
exactly once in the newly constructed chains, namely, the chains constitutes as
a chain decomposition for Sl. Finally, it remains to count the number of chains
in the decomposition. The two properties guarantee that every chain contains
exactly one element cmid with |cmid| = ⌊l(w − 1)/2⌋ (i.e., cmid ∈ C). Thus, the
size of chain decomposition is |C| = Dl,⌊l(w−1)/2⌋. This completes the proof that
C is the maximum antichain.

10

3.2 Theoretical Performance

The constant-sum WOTS+ has two advantages over the original WOTS+.

– Constant computing time. The number of hash function calls is fixed, in con-
trast to possibly variable numbers for the signing and verification algorithm
of WOTS+. While no timing attacks are identified against the implementa-
tions of WOTS+, stable computing time is always preferable (especially for
signing algorithms whose computation involves a private key).

– Reduced signature size and hash calls. For instance, the SPHINCS+-256s
parameter set suggests w = 16 and l = 67. In constant-sum WOTS+, for
w = 16 we require l = 66, which reduces 1.5% in both running time (in
terms of the expected number of hash function calls) and size. We refer to
Table 1 for more details.

Table 1. Comparison of length l between WOTS+ and constant-sum WOTS+ for
different values of Winternitz parameters w and security parameter λ (“CS” denotes
constant-sum).

128-bit 192-bit 256-bit

w WOTS+ CS WOTS+ CS WOTS+ CS

8 46 45 67 66 90 88
16 35 34 51 50 67 66
24 31 30 45 44 59 58
32 28 27 42 40 55 53
40 27 26 39 38 52 50
48 25 25 37 36 48 48

Although the encoding algorithm of constant-sum WOTS+ costs slightly
more than the checksum method, it is less dominant compared to the num-
ber of hash function calls used in the signature scheme, which will be confirmed
in the experiments.

4 Graph-Based One-Time Signature

In this section, we prove that the constant-sum WOTS+ scheme achieves the
maximum message space among all tree-based OTS with the same graph size.
Moreover, we point out a flaw in the graph-based design previously considered
optimal [7], which leaves the constant-sumWOTS+ the most size-optimal among
all existing schemes to the best of our knowledge. We begin by recalling the
graph-based OTS notations and then present our proof.

11

4.1 DAG-based One-time Signature

Since Lamport introduced the construction of one-time signature based on one-
way function [28], there has been various works improving the efficiency of such
construction. The state-of-the-art analysis framework is by modelling the inter-
nal computation structure as a directed acyclic graph [6,21,13]. In this subsec-
tion, We recall the notations and definitions which mainly come from [6,13].

Without loss of generality we consider DAGs with only one sink vertex r (i.e.,
with out-degree zero). Given a DAG G = (V,E), the secret key vertices SK ⊆ V
is defined as the sets of vertices with in-degree zero and the public key vertex
PK ⊆ V is {r} (i.e. the sink vertex). Let X be a subset of V . A vertex w is
defined recursively to be computable from X if either w ∈ X or all predecessors
of w are computable from X. A set Y ⊆ V is computable from X if any y ∈ Y
is computable from X.

A set X ⊆ V is called verifiable if r is computable from X. A verifiable set
X is minimal if no proper subset of X is verifiable.

We define the set of all minimal verifiable sets (MVSs) of a DAG G as G∗,
and additionally define the following binary relation on G∗.

Definition 4. Given a DAG G = (V,E) and G∗, we define the relation U ≤ V
for two verifiable sets U, V ∈ G∗ if U is computable from V .

With the binary relation the set G∗ becomes a partially ordered set (poset).
We additionally call the two verifiable sets U, V ∈ G∗ incomparable if neither
U ≤ V nor V ≤ U . The following lemma shows that any DAG with only one
sink vertex implies a one-time signature scheme, which was proved in [21,13].

Lemma 1. Given a DAG G = (V,E) with only one sink vertex r and n source
nodes s1, ..., sn, we can define the following one-time signature scheme. The se-
cret key is a length-n vector of λ-bit blocks sk1, ..., skn, each one corresponding to
a source vertex. We recursively define label(u) of each vertex u ∈ G as follows:

– If u = si then label(u) = ski
– Otherwise, label(u) = H(label(u1), ..., label(uk)) where u1, ..., uk are the pre-

decessors of vertex u.

The public key is label(r). Fix an antichain A of G∗, the message m in the
message spaceM := {0, . . . , |A|−1} is mapped to the m-th MVS in the antichain
A (which is also referred to as the signature scheme) . The properties of MVS
guarantee that one can generate the labels of any verifiable sets in A from the
source vertices (signing keys) and derive the label of the sink node (public key)
from the labels of any verifiable sets.

We list a table below to show the relationship between a directed acyclic
graph and its corresponding hash-based one-time signature scheme.

12

Table 2. The correspondence between concepts in DAG and those in OTS.

Concept in DAG Concept in OTS

Sink Vertex r Public Key
Source Vertices s1, . . . , sn Private Key

Antichain A of G∗ Message Space / Signature Scheme
MVS c ∈ A Signature Pattern

Max Size in A Maximum Signature Size
Graph Size |G| Computational Cost

4.2 From Trees to Chains

In this section, we prove that with regard to the same tree size, the chain struc-
ture has the same performance as any tree structure. We prove this result by
adapting the technique of Bleichenbacher and Maurer [8] in the binary tree set-
ting to the arbitrary tree structure.

Theorem 5. Let Cs denote a chain with size s. Let x be the root of a tree T ,
and T1, . . . , Tn be the subtrees of T where n ≥ 1. Then

C∗
s
∼= Cs

and

T ∗ ∼= T ∗
1 × · · · × T ∗

n ∪ {x}

Proof: It is easy to verify that C∗
s
∼= Cs. For any p ∈ T ∗, if p ̸= {x} then

p can be splited by each subtrees, thus p ∈ T ∗
1 × · · · × T ∗

n ∪ {x}. If p = {x}
then p ∈ T ∗

1 × · · · × T ∗
n ∪ {x}. p can not be {x} ∪ S for a non-empty set S

because p is minimal. The arguments for the other direction is similar. Therefore
T ∗ ∼= T ∗

1 × · · · × T ∗
n ∪ {x}.

Theorem 6. Given a tree T = (V,E) with associated signature scheme S, we
can construct another tree T ′ with associated signature scheme S ′, where the root
of T ′ is the only node with indegree greater than 1, and |S ′| ≥ |S|.

x

y

r1 r2 rn
...

x′

y′

r1 r2 rn
...

Fig. 2. The conversion process that moves the splitting point further to the top, where
triangles denote subtrees.

13

Proof: Let y be a non-root node in T with indegree greater than 1. Denote
x as its parent and r1, . . . , rn as its children for n > 1. And z1, . . . , zm be the
children of x other than y for m ≥ 0. We replace the tree T [x] with T [x′], where
we set the parent of r2, . . . , rn from y to x′. To simplify the expression, let T ∗

r be
T ∗[r1]× · · · × T ∗[rn] and T ∗

z be T ∗[z1]× · · · × T ∗[zm]. According to Theorem 5,
we have

T ∗[x] = T ∗[y]× (T ∗[z1]× . . . T ∗[zm]) ∪ {x}
= (T ∗[r1]× · · · × T ∗[rn] ∪ {y})× (T ∗[z1]× · · · × T ∗[zm]) ∪ {x}
= (T ∗

r ∪ {y})× T ∗
z ∪ {x}

and

T ∗[x′] = (T ∗[y′]× T ∗[r2]× · · · × T ∗[rn])× (T ∗[z1]× . . . T ∗[zm]) ∪ {x′}
= ((T ∗[r1] ∪ {y′})× T ∗[r2]× · · · × T ∗[rn])× T ∗

z ∪ {x′}
= (T ∗

r ∪ {y′} × T ∗[r2]× · · · × T ∗[rn])× T ∗
z ∪ {x′}

For any signature pattern p ∈ T ∗[x], if y ∈ p then we replace y with
y′, r2 . . . , rn and map p to the resulting p′ ∈ T ∗[x′] ; If p = {x} then we map
p to the {x′} ∈ T ∗[x′]; Otherwise we map p directly to T [x′]. According to the
formulas above, the mapping is injective. Therefore the size of its associated
signature scheme S ′ is always not less than the size of S.

We repeat this transformation until there is only one node with indegree
greater than one (i.e., the root), which completes the proof.

Optimal tree with bounded signature size. The conversion above shows
that the chain structure is never worse than any other tree structures of the
same tree size. However, this conversion may increase the signature size. Table 3
lists the optimal tree for fixed tree size and signature size, found by brute-force
search. All optimal trees listed in the table have the chain structure.

4.3 The Flaw of “The Best Known Graph” Construction

Bleichenbacher and Maurer [7] first proposed “The best known graph” but didn’t
give an explicit encoding algorithm. Dods et al. [13] presented this construction
in detail. We describe the construction, and show that it is not a valid scheme.

The scheme is parameterized by an integer w and an integer B. The scheme
consists of a set of B blocks, each block is a matrix of width w and height w+1.
There is also an additional 0-th block which consists of a single row of w entries.
We use the term zb,r,c to refer to the entry in the r-th row and c-th column of
the b-th block, where rows and columns are numbered from zero. The entries are
assumed to hold values, and they are inferred from the following computational
rule:

zb,r,c =


H(zb,r−1,c||zb−1,w,(c+r) mod w) r > 0 and b > 1,

H(zb,r−1,c||zb−1,0,(c+r) mod w) r > 0 and b = 1,

xbw+c r = 0

14

Table 3. Optimal trees of small sizes, where the notations follows the conventions
in [6]. Here Cs denotes a chain with size s, [T1, . . . , Tn] denotes a tree constructed by
connecting the roots of subtree T1, . . . , Tn to a new root node. In this case all subtrees
are chains.

Upper Bound of Signature Size

Tree Size 2 3 4

6 [C2, C3] [C2, C3] [C2, C3]
7 [C3, C3] [C3, C3] [C3, C3]
8 [C3, C4] [C2, C2, C3] [C2, C2, C3]
9 [C4, C4] [C2, C3, C3] [C2, C3, C3]
10 [C4, C5] [C3, C3, C3] [C3, C3, C3]
11 [C5, C5] [C3, C3, C4] [C2, C2, C3, C3]
12 [C5, C6] [C3, C4, C4] [C2, C3, C3, C3]
13 [C6, C6] [C4, C4, C4] [C3, C3, C3, C3]

To define a signature we first need to define a signature pattern. This is an
ordered list of w numbers p = (r0, . . . , rw−1), each ri ∈ {0, . . . , w}, i.e., one row
per column. We select the set of patterns S such that

⋃
i∈{0,...,w−1}

{i+ j mod w : ri ≤ j < w} = {0, . . . , w − 1}

As a toy example, when w = 2 the signature space consists 6 choices: (0, 0),
(1, 0), (2, 0), (0, 2), (0, 1), (1, 1). We use Si to denote the i-th element of S (e.g.
S0 = (0, 0),S3 = (0, 2) when w = 2), which is also a mapping from {0, . . . , |S|−1}
to S. We further define wt(p)

def
=

∑w−1
i=0 (w−ri) for p ∈ S. Note that wt(p) < |S|.

The secret key consists of N = (B+1)w values x0, . . . , xN−1 which are placed
in the bottom row of each block. The public key is H(zB,w,0|| . . . ||zB,w,w−1), i.e.
the hash of the values in the top row of the last block.

To sign a λ-bit message m, we first represent m in base-|S| (m1, . . . ,ml)
where l = ⌈λ/ log2 |S|⌉. Then we compute the checksum in base-|S|: i.e., c =∑l

i=1 wt(Smi
) = (c1, . . . , cl′) where l′ = ⌈1 + log|S| l⌉. Let B = l + l′, finally we

encode M = (m1, . . . ,ml, c1, . . . , cl′) to this graph which consists of B blocks.

The flaw is that the checksum works on Winternitz type structure but it
does not generally work on every structure. We present two message with their
checksums respectively (m, c), (m′, c′) that they are comparable.

Consider the simplest case: w = 2 and l = l′ = 1. For m = 0, c = 4 we
have M = (0, 0, 0, 1). For m′ = 1, c′ = 3 we have M ′ = (1, 0, 0, 2). They are
comparable. In other words, if the signer signs the first message m, an adversary
can easily forge a signature for message m′. We refer to Appendix B for more
discussions.

15

5 Experiments

We replace the OTS component in the SPHINCS+ and XMSS signature schemes
with the constant-sum WOTS+, and report the performance improvement.

5.1 Implementation

We adapt the respective official implementations on github [40,37] to ours [44,19],
where we reuse most of its basic modules such as hash functions, and implement
from scratch only the newly added, i.e., the encoding algorithm. Notice that
the latest implementation of SPHINCS+ takes into consideration the flaw in the
security reduction [24], and thus the comparison is fair and up-to-date.

We use the SPHINCS+ implementation optimized with architecture-specific
instructions such as AESNI or AVX2 [40]. The optimized SPHINCS+ signature
is called SPHINCS-α and its details are available in [45]. Since the XMSS team
does not provide an official high-performance implementation, we resort to the
reference code in [37]. In other words, we choose the best available implemen-
tation of the baseline schemes and plug in the constant-sum encoding, without
additional engineering optimization.

Instantiation For SPHINCS+, we provide 12 combinations of parameter choices
and instantiations. The classic security level includes 128, 192 or 256 bits. The
hash functions can be shake256 [14] or sha2 [33] (we also use sha512 to avoid the
attack on sha256 [35]). Following the decisions made by NIST [32], we remove
haraka [25] and robust version from tweakable hash function. We also offer a
small or fast option towards either small signatures or fast signature generation.

For XMSS, we select 41 sets of parameter choices7 among which the security
level can be 192, 256 or 512 bits. The hash function can be either sha2 series or
shake series.

Parameter Sets. The parameter sets for SPHINCS+ are re-tuned and listed
in Table 4. Note “bitsec” represents classic security level. Readers can also find
the parameter estimation code in our open source implementation. Please open
para.ipynb in Jupyter Notebook with SageMath. The parameters for XMSS are
chosen according the the original configuration and we refer the readers to the
original publication [23] for the details.

We note that unlike SPHINCS+ which comes with fast and short variants,
the IETF documentation of XMSS [23] does not explicitly specify the optimiza-
tion direction for the XMSS scheme. Instead, it only lists out the parameters
for different combinations of tree/hyper-tree depths (which determines the mes-
sage space), hash functions (SHA2 or SHAKE), and security levels (256 or 512).
Therefore, we simply replace WOTS+ with the constant-sum variant and bench-
mark the performance. In general, we believe that it is possible to re-tune the
parameters of XMSS in order to achieve a specific design goal (e.g., to achieve

7 We omit the parameter sets that lead to extremely high runtime to facilitate fast
experiment.

16

https://github.com/hashbasedsignature/sphincs-i/blob/main/para.ipynb

Table 4. Parameter sets for the SPHINCS-α scheme.

Parameter Set n h d log t k w l bitsec sec level sig bytes

sphincs-a-128s 16 63 9 13 12 73 22 128 I 6880
sphincs-a-128f 16 63 21 8 25 14 36 128 I 16720
sphincs-a-192s 24 63 9 14 17 77 32 192 III 14568
sphincs-a-192f 24 64 16 8 37 8 66 192 III 34896
sphincs-a-256s 32 66 11 13 23 79 42 255 V 27232
sphincs-a-256f 32 68 17 9 35 16 66 255 V 49312

the smallest signature possible while keeping the verification and signing time
below a certain threshold) for application-specific scenarios.

Table 5. Performance comparison between SPHINCS+ and SPHINCS-α, with simple
tweakable hash function instantiated with shake. Key generation, signing and verifica-
tion time are in terms of CPU cycles; public key, secret key and signature size are in
bytes. All cycle counts are the median of 100 runs.

SPHINCS+ SPHINCS-α Relative Change
Param. KeyGen Sign Verify Size KeyGen Sign Verify Size KeyGen Sign Verify Size

128f 1143558 26872236 2204802 17088 1036602 26635716 2028186 16720 −9.35% −0.88% −8.01% −2.15%
192f 1662498 45405504 3003534 35664 2199276 45218790 1744038 34896 32.29% −0.41% −41.93% −2.15%
256f 4327632 92059542 2967642 49856 4286574 91335474 3175290 49312 −0.95% −0.79% 7.00% −1.09%
128s 72597852 551233638 846486 7856 51421086 537033762 2689650 6880 −29.17% −2.58% 217.74% −12.42%
192s 105310692 1022229270 1201230 16224 78050718 988899534 3845970 14568 −25.89% −3.26% 220.17% −10.21%
256s 69033492 918473904 1701324 29792 52048332 764352612 6005448 27232 −24.60% −16.78% 252.99% −8.59%

Environment. We conduct our benchmarks on a Ubuntu 20.04 machine with
Ryzen™ 5 3600 CPU and 16GB RAM, compiled with gcc-9.3.0 -O3 -march=native
-fomit-frame-pointer -flto.

5.2 Performance

We report the performance of the improved schemes in this subsection. Instances
which are optimized using architecture-specific instructions such as AVX2 are
marked as avx2 otherwise they are marked as ref.

For SPHINCS+, we show in Table 5 a tiny performance comparison. Table 7
and Table 8 give comprehensive performance summaries for all the parameter
sets. As summarized in Table 9, the improved scheme reduces both signing time
and signature size for most parameter sets. On the downside, we experience an
up to 253% increase in verification time.

In general, we re-tune the parameters towards minimizing signature size (the
short variant) or signing time (the fast variant), which showcases advantages over
SPHINCS+ of the same security strength. Otherwise said, verification time is not

17

the main factor taken into consideration as it is typically one order of magnitude
smaller than the signing time. As a result, the verification time is increased
for certain parameter choices. Nevertheless, we argue that for specific scenarios
where verification time is critical, we can re-tune the parameters towards fast
verification. This is also the reason behind the fluctuation of key generation time
in Table 9.

For XMSS, we refer to Table 10 and Table 11 for comprehensive summaries
of all parameter sets and to Table 12 for the summarized comparison. The im-
provement over XMSS is less significant (up to 1.78% saving in signature size)
compared to that over SPHINCS+, which may attribute to that we only replaced
the encoding scheme without re-tuning the parameters.

References

1. André, D.: Mémoire sur les combinaisons régulières et leurs applications. In: An-
nales scientifiques de l’École Normale Supérieure. vol. 5, pp. 155–198 (1876)

2. Aumasson, J.P., Endignoux, G.: Improving stateless hash-based signatures. In:
Smart, N.P. (ed.) Topics in Cryptology – CT-RSA 2018. Lecture Notes in Computer
Science, vol. 10808, pp. 219–242. Springer, Heidelberg, Germany, San Francisco,
CA, USA (Apr 16–20, 2018). https://doi.org/10.1007/978-3-319-76953-0 12

3. Belbachir, H., Igueroufa, O.: Congruence properties for Bis nomial coefficients and
like extended ram and kummer theorems under suitable hypothesis. Mediterranean
Journal of Mathematics 17(1), 1–14 (2020)

4. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
Practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2015, Part I. Lecture Notes in Computer
Science, vol. 9056, pp. 368–397. Springer, Heidelberg, Germany, Sofia, Bulgaria
(Apr 26–30, 2015). https://doi.org/10.1007/978-3-662-46800-5 15

5. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The SPHINCS+ signature framework. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and
Communications Security. pp. 2129–2146. ACM Press (Nov 11–15, 2019).
https://doi.org/10.1145/3319535.3363229

6. Bleichenbacher, D., Maurer, U.M.: Directed acyclic graphs, one-way functions and
digital signatures. In: Desmedt, Y. (ed.) Advances in Cryptology – CRYPTO’94.
Lecture Notes in Computer Science, vol. 839, pp. 75–82. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 21–25, 1994). https://doi.org/10.1007/3-
540-48658-5 9

7. Bleichenbacher, D., Maurer, U.M.: On the efficiency of one-time digital signatures.
In: Kim, K., Matsumoto, T. (eds.) Advances in Cryptology – ASIACRYPT’96.
Lecture Notes in Computer Science, vol. 1163, pp. 145–158. Springer, Heidelberg,
Germany, Kyongju, Korea (Nov 3–7, 1996). https://doi.org/10.1007/BFb0034843

8. Bleichenbacher, D., Maurer, U.M.: Optimal tree-based one-time digital signature
schemes. In: Annual Symposium on Theoretical Aspects of Computer Science. pp.
361–374. Springer (1996)

9. Bos, J.N., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.) Ad-
vances in Cryptology – CRYPTO’92. Lecture Notes in Computer Science, vol. 740,

18

https://doi.org/10.1007/978-3-319-76953-0_12
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/3-540-48658-5_9
https://doi.org/10.1007/3-540-48658-5_9
https://doi.org/10.1007/BFb0034843

pp. 1–14. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20,
1993). https://doi.org/10.1007/3-540-48071-4 1

10. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A., et al.: Recommendation for stateful hash-based signature schemes. NIST
Special Publication 800, 208 (2020)

11. Cruz, J.P., Yatani, Y., Kaji, Y.: Constant-sum fingerprinting for winternitz one-
time signature. In: 2016 International Symposium on Information Theory and Its
Applications (ISITA). pp. 703–707. IEEE (2016)

12. Dilworth, R.P.: A decomposition theorem for partially ordered sets. In: Classic
Papers in Combinatorics, pp. 139–144. Springer (2009)

13. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) 10th IMA International Conference on Cryptography and Coding. Lec-
ture Notes in Computer Science, vol. 3796, pp. 96–115. Springer, Heidelberg, Ger-
many, Cirencester, UK (Dec 19–21, 2005)

14. Dworkin, M.: SHA-3 standard: Permutation-based hash and extendable-output
functions (Aug 2015). https://doi.org/https://doi.org/10.6028/NIST.FIPS.202

15. Euler, L.: De evolutione potestatis polynomialis cuiuscunque (1 + x + x2 + x3 +
x4+etc.)n. Nova Acta Academiae Scientiarum Imperialis Petropolitanae pp. 47–57
(1801)

16. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) Advances in Cryptology – CRYPTO’86. Lecture
Notes in Computer Science, vol. 263, pp. 104–110. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 1987). https://doi.org/10.1007/3-540-47721-7 8

17. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge, UK (2004)

18. Gueron, S., Mouha, N.: SPHINCS-simpira: Fast stateless hash-based signatures
with post-quantum security. Cryptology ePrint Archive, Report 2017/645 (2017),
http://eprint.iacr.org/2017/645

19. Hashbasedsignature: XMSS-i. https://github.com/hashbasedsignature/xmss-i
(2022)

20. Hashbasedsignature: cswots. https://github.com/hashbasedsignature/cswots

(2023)
21. Hevia, A., Micciancio, D.: The provable security of graph-based one-time signatures

and extensions to algebraic signature schemes. In: Zheng, Y. (ed.) Advances in
Cryptology – ASIACRYPT 2002. Lecture Notes in Computer Science, vol. 2501,
pp. 379–396. Springer, Heidelberg, Germany, Queenstown, New Zealand (Dec 1–5,
2002). https://doi.org/10.1007/3-540-36178-2 24

22. Hülsing, A.: W-OTS+–shorter signatures for hash-based signature schemes. In:
International Conference on Cryptology in Africa. pp. 173–188. Springer (2013)

23. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: extended
merkle signature scheme. In: RFC 8391. IRTF (2018)

24. Hülsing, A., Kudinov, M.: Recovering the tight security proof of SPHINCS+. Cryp-
tology ePrint Archive, Paper 2022/346 (2022), https://eprint.iacr.org/2022/
346, https://eprint.iacr.org/2022/346

25. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - Efficient short-
input hashing for post-quantum applications. IACR Transactions on Symmet-
ric Cryptology 2016(2), 1–29 (2016). https://doi.org/10.13154/tosc.v2016.i2.1-29,
http://tosc.iacr.org/index.php/ToSC/article/view/563

26. Kudinov, M., Hülsing, A., Ronen, E., Yogev, E.: SPHINCS+C: Compressing
SPHINCS+ with (almost) no cost. Cryptology ePrint Archive, Paper 2022/778
(2022), https://eprint.iacr.org/2022/778

19

https://doi.org/10.1007/3-540-48071-4_1
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1007/3-540-47721-7_8
http://eprint.iacr.org/2017/645
https://github.com/hashbasedsignature/xmss-i
https://github.com/hashbasedsignature/cswots
https://doi.org/10.1007/3-540-36178-2_24
https://eprint.iacr.org/2022/346
https://eprint.iacr.org/2022/346
https://eprint.iacr.org/2022/346
https://doi.org/10.13154/tosc.v2016.i2.1-29
http://tosc.iacr.org/index.php/ToSC/article/view/563
https://eprint.iacr.org/2022/778

27. Kudinov, M.A., Kiktenko, E.O., Fedorov, A.K.: Security analysis of the W-
OTS+ signature scheme: Updating security bounds. Matematicheskie Voprosy
Kriptografii [Mathematical Aspects of Cryptography] 12(2), 129–145 (Jun 2021).
https://doi.org/10.4213/mvk362

28. Lamport, L.: Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory (Oct 1979)

29. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-micali hash-based signatures. In:
RFC 8554. IRTF (2019)

30. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) Advances in Cryptology – CRYPTO’87. Lecture Notes in
Computer Science, vol. 293, pp. 369–378. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 16–20, 1988). https://doi.org/10.1007/3-540-48184-2 32

31. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology – CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp. 218–
238. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 1990).
https://doi.org/10.1007/0-387-34805-0 21

32. Moody, D.: Parameter selection for the selected algorithms (2022),
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/

m/lj4VRfAnFwAJ

33. National Institute of Standards and Technology: Secure hash standard (2015-08-04
2015). https://doi.org/https://doi.org/10.6028/NIST.FIPS.180-4

34. Perin, L.P., Zambonin, G., Custódio, R., Moura, L., Panario, D.: Improved
constant-sum encodings for hash-based signatures. Journal of Cryptographic En-
gineering 11, 329–351 (2021)

35. Perlner, R., Kelsey, J., Cooper, D.: Breaking category five SPHINCS+ with SHA-
256. Cryptology ePrint Archive, Paper 2022/1061 (2022), https://eprint.iacr.
org/2022/1061

36. Rabin, M.O.: Digitalized signatures. Foundations of secure computation pp. 155–
168 (1978)

37. Rijneveld, J., Hülsing, A., Cooper, D., Westerbaan, B.: The XMSS reference code.
https://github.com/XMSS/xmss-reference (2022)

38. Sperner, E.: Ein satz über untermengen einer endlichen menge. Mathematische
Zeitschrift 27(1), 544–548 (1928)

39. Team, T.N.P.: PQC standardization process: Announcing four candidates to be
standardized, plus fourth round candidates. NIST (2022), https://csrc.nist.
gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

40. The SPHINCS+ Team: The SPHINCS+ reference code, accompanying the sub-
mission to NIST’s post-quantum cryptography project. https://github.com/

sphincs/sphincsplus (2021)
41. Vaudenay, S.: One-time identification with low memory. In: Eurocode’92, pp. 217–

228. Springer (1993)
42. Warnaar, S.O.: The Andrews-Gordon identities and q-multinomial coefficients.

Communications in mathematical physics 184(1), 203–232 (1997)
43. Zare, D.: How to express (1 + x+ x2 + · · ·+ xm)n as a power series? Mathematics

Stack Exchange, https://math.stackexchange.com/q/28861, (version: 2011-11-
15)

44. Zhang, K.: sphincs-a. https://github.com/kzoacn/sphincs-a (2023)
45. Zhang, K., Cui, H., Yu, Y.: SPHINCS-α: A compact stateless hash-based signa-

ture scheme. Cryptology ePrint Archive, Paper 2022/059 (2022), https://eprint.
iacr.org/2022/059, https://eprint.iacr.org/2022/059

20

https://doi.org/10.4213/mvk362
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/0-387-34805-0_21
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/lj4VRfAnFwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs/m/lj4VRfAnFwAJ
https://doi.org/https://doi.org/10.6028/NIST.FIPS.180-4
https://eprint.iacr.org/2022/1061
https://eprint.iacr.org/2022/1061
https://github.com/XMSS/xmss-reference
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://github.com/sphincs/sphincsplus
https://github.com/sphincs/sphincsplus
https://math.stackexchange.com/q/28861
https://github.com/kzoacn/sphincs-a
https://eprint.iacr.org/2022/059
https://eprint.iacr.org/2022/059
https://eprint.iacr.org/2022/059

A An Example of Constant-sum WOTS+

In this section, we present a concrete example of constant-sum WOTS+, includ-
ing counting, encoding algorithm and the optimality proof. In this example, we
choose parameter l = 3 and w = 4, therefore the size of C is maximum when the
constant-sum is ⌊l(w − 1)/2⌋ = 4. This example can be also generated from a
python code, which is open-sourced at [20].

Counting the size. Recall that

Dl,s = |{c ∈ [w]l :

l∑
i=1

ci = s}| ,

with their initial values

D0,0 = 1,

D0,s = 0, for s ∈ {1, 2, . . . , w − 1}
Dl,s = 0, for 1 ≤ l ∈ Z, s ∈ Z− ,

and recurrence relation

Dl,s =

w−1∑
i=0

Dl−1,s−i, 2 ≤ l ∈ Z, s ∈ {0, 1, . . . , l(w − 1)} .

We can compute the table of D, Table 6.

Table 6. The table of D

l
s

0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
2 1 2 3 4 3 2 1 0 0 0
3 1 3 6 10 12 12 10 6 3 1

The value of D3,4 tells us that we have 12 different vectors such that the
length of each is 3 and the sum of each is 4.

The encoding algorithm. Since we D3,4 = 12, we can encode at most 12
different messages, represented by {0, 1, . . . , 11}. We show how to encode x = 4
to a constant-sum vector. Recall that for each loop, we determine vl−i = j by
seeking which j satisfies x ∈ [

∑
k<j Dl−1,s−k,

∑
k≤j Dl−1,s−k).

– Initialization. Initially, we have x = 4 and s = 4.

21

– Loop 1. Dl,s = D3,4 = 12 = 2 + 3 + 4 + 3 = D2,1 +D2,2 +D2,3 +D2,4 and
D2,4 ≤ x = 4 < D2,3 + D2,4. So we have j = 1. Update the variables to
v1 = 1, s = 3, x = 1.

– Loop 2. Dl,s = D2,3 = 4 = 1 + 1 + 1 + 1 = D1,0 +D1,1 +D1,2 +D1,3 and
D1,3 ≤ x = 1 < D1,2 + D1,3. So we have j = 1. Update the variables to
v2 = 1, s = 2, x = 0.

– Loop 3. Dl,s = D1,2 = 1 = 1+0+0 = D0,0+D0,1+D0,2 and D0,1+D0,2+ ≤
x = 0 < D0,0 + D0,1 + D0,2. So we have j = 2. Update the variables to
v3 = 2, s = 0, x = 0.

– Finally. We get v = (1, 1, 2).

By executing the encoding algorithm, We can list those 12 vectors (in order):
{(0, 1, 3), (0, 2, 2), (0, 3, 1), (1, 0, 3), (1, 1, 2), (1, 2, 1), (1, 3, 0), (2, 0, 2), (2, 1, 1), (2, 2, 0), (3, 0, 1), (3, 1, 0)}.

Optimality proof.

By Dilworth’s theorem, the proof of optimality is also a construction of chain
decomposition. We present an example here, which is computed in the way of
the proof of Theorem 4.

– l = 1. This is a trivial case. We have only one chain (0) ≤ (1) ≤ (2) ≤ (3).

– l = 2. We have 4 chains, they are:

1. (0, 0) ≤ (1, 0) ≤ (2, 0) ≤ (3, 0) ≤ (3, 1) ≤ (3, 2) ≤ (3, 3).

2. (0, 1) ≤ (1, 1) ≤ (2, 1) ≤ (2, 2) ≤ (2, 3).

3. (0, 2) ≤ (1, 2) ≤ (1, 3).

4. (0, 3).

– l = 3. We have 12 chains, they are:

1. (0, 0, 0) ≤ (1, 0, 0) ≤ (2, 0, 0) ≤ (3, 0, 0) ≤ (3, 1, 0) ≤ (3, 2, 0) ≤ (3, 3, 0) ≤
(3, 3, 1) ≤ (3, 3, 2) ≤ (3, 3, 3)

2. (0, 0, 1) ≤ (1, 0, 1) ≤ (2, 0, 1) ≤ (3, 0, 1) ≤ (3, 1, 1) ≤ (3, 2, 1) ≤ (3, 2, 2) ≤
(3, 2, 3)

3. (0, 0, 2) ≤ (1, 0, 2) ≤ (2, 0, 2) ≤ (3, 0, 2) ≤ (3, 1, 2) ≤ (3, 1, 3)

4. (0, 0, 3) ≤ (1, 0, 3) ≤ (2, 0, 3) ≤ (3, 0, 3)

5. (0, 1, 0) ≤ (1, 1, 0) ≤ (2, 1, 0) ≤ (2, 2, 0) ≤ (2, 3, 0) ≤ (2, 3, 1) ≤ (2, 3, 2) ≤
(2, 3, 3)

6. (0, 1, 1) ≤ (1, 1, 1) ≤ (2, 1, 1) ≤ (2, 2, 1) ≤ (2, 2, 2) ≤ (2, 2, 3)

7. (0, 1, 2) ≤ (1, 1, 2) ≤ (2, 1, 2) ≤ (2, 1, 3)

8. (0, 1, 3) ≤ (1, 1, 3)

9. (0, 2, 0) ≤ (1, 2, 0) ≤ (1, 3, 0) ≤ (1, 3, 1) ≤ (1, 3, 2) ≤ (1, 3, 3)

10. (0, 2, 1) ≤ (1, 2, 1) ≤ (1, 2, 2) ≤ (1, 2, 3)

11. (0, 2, 2) ≤ (0, 2, 3)

12. (0, 3, 0) ≤ (0, 3, 1) ≤ (0, 3, 2) ≤ (0, 3, 3)

The size of this chain decomposition meets the size of antichain C. According
to Dilworth’s theorem, the antichain C is maximum.

22

B On The Best Known Graph

We first correct a minor fault in the design of the weight function of [13]. The old

weight function was wt(p) =
∑w−1

i=0 (w + 1− ri). Since we know ri ∈ {0, . . . , w},
the range of the old weight function is [w,w(w+1)]. When w = 2, this range can

not be fitted into {0, . . . , |S|−1}. Thus we make it into wt(p) =
∑w−1

i=0 (w−ri) ∈
[0, w2], which is a more suitable choice.

For l = l′ = 1, w = 2, we can have a correct construction if we reorder the
mapping {Si} to (0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2). ([13] does not specific the
order that mapping integer to signature pattern.) This does not mean we fixed
this construction. The key problem is we can not prove the pairs of the message
and checksum (m, c) form an antichain in this graph. There may exist forgery
attacks for larger l, l′, w parameters.

There is a way to fix it by using “separate representation function encoding”,
purposed in [7], which can be viewed as a generalized checksum method. How-
ever, even if we use this new encoding, the performance of this graph-based is
clearly worst than WOTS+ (with checksum). Both two constructions require en-
coding checksum separately. For w = 3, the WOTS+ fully utilized (w+1)w = 64
message space while the graph-based has only |S| = 51 choices.

C More Detailed Comparisons

C.1 Comparison Between Original and Improved SPHINCS+

We benchmarked the performance of the improved SPHINCS+ under 24 param-
eter settings ({shake256, sha256}× {128, 192, 256}× {fast, small}× {ref, avx2}).
To facilitate a fair comparison, we tested our implementation (adapted from
the SPHINCS+ codes) along with the original SPHINCS+. The test results are
reported in Table 7 and Table 8 with a comparison in Table 9.

23

Table 7. Runtime benchmarks for SPHINCS+. Key generation, signing and verification
time are in the number of cpu cycles; public key, secret key and signature size are in
bytes. All cycle counts are the median of 100 runs.

Parameter Set Impl. KeyGen Sign Verify Pk Sk Sig

sphincs-shake-128f ref 7622514 178188408 10775124 32 64 17088
sphincs-shake-192f ref 11240172 290022120 15972588 48 96 35664
sphincs-shake-256f ref 29488050 593083386 15949980 64 128 49856
sphincs-shake-128s ref 493648758 3747092580 3602178 32 64 7856
sphincs-shake-192s ref 717515010 6427813662 5332932 48 96 16224
sphincs-shake-256s ref 470748762 5584718124 7709508 64 128 29792
sphincs-sha2-128f ref 4600566 107749800 6402438 32 64 17088
sphincs-sha2-192f ref 6705198 181354752 9365400 48 96 35664
sphincs-sha2-256f ref 17695728 362443014 9947394 64 128 49856
sphincs-sha2-128s ref 294665274 2237140404 2282346 32 64 7856
sphincs-sha2-192s ref 428811300 3954195432 3266478 48 96 16224
sphincs-sha2-256s ref 283132530 3503794590 4785678 64 128 29792
sphincs-shake-128f avx2 2494854 58500990 4063716 32 64 17088
sphincs-shake-192f avx2 3541392 91863954 5919426 48 96 35664
sphincs-shake-256f avx2 9676188 193273884 6019830 64 128 49856
sphincs-shake-128s avx2 159844320 1210947264 1491894 32 64 7856
sphincs-shake-192s avx2 233254134 2093058036 2165706 48 96 16224
sphincs-shake-256s avx2 153274212 1799699922 3085776 64 128 29792
sphincs-sha2-128f avx2 1143558 26872236 2204802 32 64 17088
sphincs-sha2-192f avx2 1662498 45405504 3003534 48 96 35664
sphincs-sha2-256f avx2 4327632 92059542 2967642 64 128 49856
sphincs-sha2-128s avx2 72597852 551233638 846486 32 64 7856
sphincs-sha2-192s avx2 105310692 1022229270 1201230 48 96 16224
sphincs-sha2-256s avx2 69033492 918473904 1701324 64 128 29792

24

Table 8. Runtime benchmarks for SPHINCS-α. Key generation, signing and verifica-
tion time are in the number of cpu cycles; public key, secret key and signature size are
in bytes. All cycle counts are the median of 100 runs.

Parameter Set Impl. KeyGen Sign Verify Pk Sk Sig

sphincs-a-shake-128f ref 6861114 176440590 9035874 32 64 16720
sphincs-a-shake-192f ref 14555628 281397294 7353450 48 96 34896
sphincs-a-shake-256f ref 29112588 586596492 15740802 64 128 49312
sphincs-a-shake-128s ref 347407200 3628303722 12591234 32 64 6880
sphincs-a-shake-192s ref 533064942 6209945190 19292382 48 96 14568
sphincs-a-shake-256s ref 362125278 4942646316 31932360 64 128 27232
sphincs-a-sha2-128f ref 4157334 106933014 5569452 32 64 16720
sphincs-a-sha2-192f ref 8837622 173603070 4654278 48 96 34896
sphincs-a-sha2-256f ref 17439858 357693966 9646776 64 128 49312
sphincs-a-sha2-128s ref 208068264 2172320100 7584102 32 64 6880
sphincs-a-sha2-192s ref 319426722 3827118258 11723508 48 96 14568
sphincs-a-sha2-256s ref 215034228 3011033142 19147662 64 128 27232
sphincs-a-shake-128f avx2 2218014 57069090 3558492 32 64 16720
sphincs-a-shake-192f avx2 4614804 92073114 3028500 48 96 34896
sphincs-a-shake-256f avx2 9563742 191187306 5983920 64 128 49312
sphincs-a-shake-128s avx2 108983646 1139743980 4891482 32 64 6880
sphincs-a-shake-192s avx2 171004500 1996754616 7254738 48 96 14568
sphincs-a-shake-256s avx2 115604604 1582371720 11677806 64 128 27232
sphincs-a-sha2-128f avx2 1036602 26635716 2028186 32 64 16720
sphincs-a-sha2-192f avx2 2199276 45218790 1744038 48 96 34896
sphincs-a-sha2-256f avx2 4286574 91335474 3175290 64 128 49312
sphincs-a-sha2-128s avx2 51421086 537033762 2689650 32 64 6880
sphincs-a-sha2-192s avx2 78050718 988899534 3845970 48 96 14568
sphincs-a-sha2-256s avx2 52048332 764352612 6005448 64 128 27232

25

Table 9. Performance comparison between the original and improved SPHINCS+ in
terms of relative changes.

Parameter Set Runtime

SPHINCS+ SPHINCS-α Impl. KeyGen Sign Verify Sig Size

sphincs-shake-128f sphincs-a-shake-128f ref −9.99% −0.98% −16.14% −2.15%
sphincs-shake-192f sphincs-a-shake-192f ref 29.50% −2.97% −53.96% −2.15%
sphincs-shake-256f sphincs-a-shake-256f ref −1.27% −1.09% −1.31% −1.09%
sphincs-shake-128s sphincs-a-shake-128s ref −29.62% −3.17% 249.55% −12.42%
sphincs-shake-192s sphincs-a-shake-192s ref −25.71% −3.39% 261.76% −10.21%
sphincs-shake-256s sphincs-a-shake-256s ref −23.07% −11.50% 314.19% −8.59%
sphincs-sha2-128f sphincs-a-sha2-128f ref −9.63% −0.76% −13.01% −2.15%
sphincs-sha2-192f sphincs-a-sha2-192f ref 31.80% −4.27% −50.30% −2.15%
sphincs-sha2-256f sphincs-a-sha2-256f ref −1.45% −1.31% −3.02% −1.09%
sphincs-sha2-128s sphincs-a-sha2-128s ref −29.39% −2.90% 232.29% −12.42%
sphincs-sha2-192s sphincs-a-sha2-192s ref −25.51% −3.21% 258.90% −10.21%
sphincs-sha2-256s sphincs-a-sha2-256s ref −24.05% −14.06% 300.10% −8.59%
sphincs-shake-128f sphincs-a-shake-128f avx2 −11.10% −2.45% −12.43% −2.15%
sphincs-shake-192f sphincs-a-shake-192f avx2 30.31% 0.23% −48.84% −2.15%
sphincs-shake-256f sphincs-a-shake-256f avx2 −1.16% −1.08% −0.60% −1.09%
sphincs-shake-128s sphincs-a-shake-128s avx2 −31.82% −5.88% 227.87% −12.42%
sphincs-shake-192s sphincs-a-shake-192s avx2 −26.69% −4.60% 234.98% −10.21%
sphincs-shake-256s sphincs-a-shake-256s avx2 −24.58% −12.08% 278.44% −8.59%
sphincs-sha2-128f sphincs-a-sha2-128f avx2 −9.35% −0.88% −8.01% −2.15%
sphincs-sha2-192f sphincs-a-sha2-192f avx2 32.29% −0.41% −41.93% −2.15%
sphincs-sha2-256f sphincs-a-sha2-256f avx2 −0.95% −0.79% 7.00% −1.09%
sphincs-sha2-128s sphincs-a-sha2-128s avx2 −29.17% −2.58% 217.74% −12.42%
sphincs-sha2-192s sphincs-a-sha2-192s avx2 −25.89% −3.26% 220.17% −10.21%
sphincs-sha2-256s sphincs-a-sha2-256s avx2 −24.60% −16.78% 252.99% −8.59%

C.2 Comparison Between Original and Improved XMSS

We benchmarked the performance of the improved XMSS under selected pa-
rameter settings. To facilitate a fair comparison, we tested our implementation
(adapted from the official repository) along with the original XMSS. The test
results are reported in Table 10 and Table 11 with a comparison in Table 12.

26

Table 10. Runtime benchmarks for XMSSMT. Key generation, signing and verification
time are in the number of cpu cycles; public key, secret key and signature size are in
bytes. All cycle counts are the median of 16 runs.

Runtime Size

Parameter Set KeyGen Sign Verify Pk Sk Sig

XMSSMT-SHA2-20/2-256 3127413888 3771702 1617156 64 5998 4963
XMSSMT-SHA2-20/4-256 222559560 6706008 3110238 64 10938 9251
XMSSMT-SHA2-40/4-256 6285411684 6830658 3247326 64 15252 9893
XMSSMT-SHA2-40/8-256 401766552 6904440 6711552 64 24516 18469
XMSSMT-SHA2-60/6-256 9494855496 10171836 5168160 64 24507 14824
XMSSMT-SHA2-60/12-256 631228644 6877116 9580554 64 38095 27688
XMSSMT-SHA2-20/2-512 21988477260 27152100 11814210 128 15822 18115
XMSSMT-SHA2-20/4-512 1398460644 47020626 22096512 128 33818 34883
XMSSMT-SHA2-40/4-512 43629570864 47908404 23528916 128 42164 36165
XMSSMT-SHA2-40/8-512 2805197148 47601774 45550674 128 76964 69701
XMSSMT-SHA2-60/6-512 65939229972 69142698 33890688 128 68507 54216
XMSSMT-SHA2-60/12-512 4155322500 47779668 68537412 128 120111 104520
XMSSMT-SHA2-20/2-192 2020361292 2466378 1176246 48 4182 2955
XMSSMT-SHA2-20/4-192 127543572 4318398 2133288 48 7138 5403
XMSSMT-SHA2-40/4-192 4053119040 4406868 2126394 48 10444 5885
XMSSMT-SHA2-40/8-192 256662108 4352274 4225824 48 15884 10781
XMSSMT-SHA2-60/6-192 6067543248 6375420 3298608 48 16707 8816
XMSSMT-SHA2-60/12-192 378984168 4349250 6459930 48 24631 16160
XMSSMT-SHAKE-20/2-256 11248052760 13700142 6175242 64 5998 4963
XMSSMT-SHAKE-20/4-256 710060580 24423426 11387034 64 10938 9251
XMSSMT-SHAKE-40/4-256 22458447756 24651684 11682468 64 15252 9893
XMSSMT-SHAKE-40/8-256 1439101980 24385518 23653764 64 24516 18469
XMSSMT-SHAKE-60/6-256 33696560700 35529246 16996320 64 24507 14824
XMSSMT-SHAKE-60/12-256 2150833356 24420024 36412686 64 38095 27688
XMSSMT-SHAKE-20/4-512 2455477200 83672478 40536054 128 33818 34883
XMSSMT-SHAKE-40/4-512 76825886112 84051144 40027680 128 42164 36165
XMSSMT-SHAKE-40/8-512 4869152712 83529522 78300342 128 76964 69701
XMSSMT-SHAKE-60/6-512 115072275744 121304394 60009516 128 68507 54216
XMSSMT-SHAKE-60/12-512 7279843032 83360394 120177378 128 120111 104520
XMSSMT-SHAKE256-20/2-256 10871025984 13265334 5549670 64 5998 4963
XMSSMT-SHAKE256-20/4-256 717916932 23495616 11077614 64 10938 9251
XMSSMT-SHAKE256-40/4-256 21817454832 23909310 12181104 64 15252 9893
XMSSMT-SHAKE256-40/8-256 1402673508 23652882 22820472 64 24516 18469
XMSSMT-SHAKE256-60/6-256 32735511720 34534476 18080442 64 24507 14824
XMSSMT-SHAKE256-60/12-256 2086527672 23456430 34476750 64 38095 27688
XMSSMT-SHAKE256-20/2-192 8045426736 9687330 4610826 48 4182 2955
XMSSMT-SHAKE256-20/4-192 527327388 17429292 8847306 48 7138 5403
XMSSMT-SHAKE256-40/4-192 16079381892 17519976 8559144 48 10444 5885
XMSSMT-SHAKE256-40/8-192 1035980136 17371080 17699076 48 15884 10781
XMSSMT-SHAKE256-60/6-192 24215925168 25526448 13124520 48 16707 8816
XMSSMT-SHAKE256-60/12-192 1525123404 17327790 25423218 48 24631 16160

27

Table 11. Runtime benchmarks for improved XMSSMT. Key generation, signing and
verification time are in the number of cpu cycles; public key, secret key and signature
size are in bytes. All cycle counts are the median of 16 runs.

Runtime Size

Parameter Set KeyGen Sign Verify Pk Sk Sig

XMSSMT-i-SHA2-20/2-256 3118500216 3768984 1676682 64 5966 4899
XMSSMT-i-SHA2-20/4-256 205928460 6701778 3302856 64 10842 9123
XMSSMT-i-SHA2-40/4-256 6111330408 6775578 3367674 64 15156 9765
XMSSMT-i-SHA2-40/8-256 421704720 6636150 6578640 64 24292 18213
XMSSMT-i-SHA2-60/6-256 9212217048 9834372 5043978 64 24347 14632
XMSSMT-i-SHA2-60/12-256 590852376 6655554 9848970 64 37743 27304
XMSSMT-i-SHA2-20/2-512 21771015228 26223552 11456892 128 15758 17987
XMSSMT-i-SHA2-20/4-512 1444733100 47859624 22947750 128 33626 34627
XMSSMT-i-SHA2-40/4-512 43337753064 47542536 23114718 128 41972 35909
XMSSMT-i-SHA2-40/8-512 2891694348 47495754 46440648 128 76516 69189
XMSSMT-i-SHA2-60/6-512 65241573480 68704668 34608996 128 68187 53832
XMSSMT-i-SHA2-60/12-512 4197559644 47451924 69522930 128 119407 103752
XMSSMT-i-SHA2-20/2-192 1997951040 2467044 1099980 48 4158 2907
XMSSMT-i-SHA2-20/4-192 133595676 4259340 2137932 48 7066 5307
XMSSMT-i-SHA2-40/4-192 3993020136 4302990 2186424 48 10372 5789
XMSSMT-i-SHA2-40/8-192 270959364 4279050 4293126 48 15716 10589
XMSSMT-i-SHA2-60/6-192 5922093888 6206382 3251826 48 16587 8672
XMSSMT-i-SHA2-60/12-192 388450260 4318524 6467760 48 24367 15872
XMSSMT-i-SHAKE-20/2-256 10926481032 13278870 5770854 64 5966 4899
XMSSMT-i-SHAKE-20/4-256 722327868 23823738 11518020 64 10842 9123
XMSSMT-i-SHAKE-40/4-256 21800594664 23788656 11308122 64 15156 9765
XMSSMT-i-SHAKE-40/8-256 1422925776 23784876 22552668 64 24292 18213
XMSSMT-i-SHAKE-60/6-256 32771966400 34440912 17060670 64 24347 14632
XMSSMT-i-SHAKE-60/12-256 2132075484 23932764 33975306 64 37743 27304
XMSSMT-i-SHAKE-20/4-512 2481508404 83815794 39808368 128 33626 34627
XMSSMT-i-SHAKE-40/4-512 75490496244 82866564 39879108 128 41972 35909
XMSSMT-i-SHAKE-40/8-512 4944876840 83403126 79286958 128 76516 69189
XMSSMT-i-SHAKE-60/6-512 113727752028 119970360 59860440 128 68187 53832
XMSSMT-i-SHAKE-60/12-512 7349705244 82872720 119115792 128 119407 103752
XMSSMT-i-SHAKE256-20/2-256 10433094588 12529494 5531094 64 5966 4899
XMSSMT-i-SHAKE256-20/4-256 698620392 22806234 11090754 64 10842 9123
XMSSMT-i-SHAKE256-40/4-256 20830958172 22584744 11067732 64 15156 9765
XMSSMT-i-SHAKE256-40/8-256 1357966188 22758804 22020138 64 24292 18213
XMSSMT-i-SHAKE256-60/6-256 31048091712 32707962 16657614 64 24347 14632
XMSSMT-i-SHAKE256-60/12-256 2019728664 22604778 32743098 64 37743 27304
XMSSMT-i-SHAKE256-20/2-192 7701230628 9301482 4125564 48 4158 2907
XMSSMT-i-SHAKE256-20/4-192 513443304 16590348 8076150 48 7066 5307
XMSSMT-i-SHAKE256-40/4-192 15321653784 16670448 8214084 48 10372 5789
XMSSMT-i-SHAKE256-40/8-192 979483644 16741926 16256556 48 15716 10589
XMSSMT-i-SHAKE256-60/6-192 22849024932 24038622 12288024 48 16587 8672
XMSSMT-i-SHAKE256-60/12-192 1470316644 16589088 24196410 48 24367 15872

28

Table 12. Performance comparison between the original and improved XMSS in terms
of relative changes.

Parameter Set Runtime

Original Improved KeyGen Sign Verify Sig Size

XMSSMT-SHA2-20/2-256 XMSSMT-i-SHA2-20/2-256 −0.29% −1.29% 3.68% −1.29%
XMSSMT-SHA2-20/4-256 XMSSMT-i-SHA2-20/4-256 −7.47% −1.38% 6.19% −1.38%
XMSSMT-SHA2-40/4-256 XMSSMT-i-SHA2-40/4-256 −2.77% −1.29% 3.71% −1.29%
XMSSMT-SHA2-40/8-256 XMSSMT-i-SHA2-40/8-256 4.96% −1.39% −1.98% −1.39%
XMSSMT-SHA2-60/6-256 XMSSMT-i-SHA2-60/6-256 −2.98% −1.30% −2.40% −1.30%
XMSSMT-SHA2-60/12-256 XMSSMT-i-SHA2-60/12-256 −6.40% −1.39% 2.80% −1.39%
XMSSMT-SHA2-20/2-512 XMSSMT-i-SHA2-20/2-512 −0.99% −0.71% −3.02% −0.71%
XMSSMT-SHA2-20/4-512 XMSSMT-i-SHA2-20/4-512 3.31% −0.73% 3.85% −0.73%
XMSSMT-SHA2-40/4-512 XMSSMT-i-SHA2-40/4-512 −0.67% −0.71% −1.76% −0.71%
XMSSMT-SHA2-40/8-512 XMSSMT-i-SHA2-40/8-512 3.08% −0.73% 1.95% −0.73%
XMSSMT-SHA2-60/6-512 XMSSMT-i-SHA2-60/6-512 −1.06% −0.71% 2.12% −0.71%
XMSSMT-SHA2-60/12-512 XMSSMT-i-SHA2-60/12-512 1.02% −0.73% 1.44% −0.73%
XMSSMT-SHA2-20/2-192 XMSSMT-i-SHA2-20/2-192 −1.11% −1.62% −6.48% −1.62%
XMSSMT-SHA2-20/4-192 XMSSMT-i-SHA2-20/4-192 4.75% −1.78% 0.22% −1.78%
XMSSMT-SHA2-40/4-192 XMSSMT-i-SHA2-40/4-192 −1.48% −1.63% 2.82% −1.63%
XMSSMT-SHA2-40/8-192 XMSSMT-i-SHA2-40/8-192 5.57% −1.78% 1.59% −1.78%
XMSSMT-SHA2-60/6-192 XMSSMT-i-SHA2-60/6-192 −2.40% −1.63% −1.42% −1.63%
XMSSMT-SHA2-60/12-192 XMSSMT-i-SHA2-60/12-192 2.50% −1.78% 0.12% −1.78%
XMSSMT-SHAKE-20/2-256 XMSSMT-i-SHAKE-20/2-256 −2.86% −1.29% −6.55% −1.29%
XMSSMT-SHAKE-20/4-256 XMSSMT-i-SHAKE-20/4-256 1.73% −1.38% 1.15% −1.38%
XMSSMT-SHAKE-40/4-256 XMSSMT-i-SHAKE-40/4-256 −2.93% −1.29% −3.20% −1.29%
XMSSMT-SHAKE-40/8-256 XMSSMT-i-SHAKE-40/8-256 −1.12% −1.39% −4.66% −1.39%
XMSSMT-SHAKE-60/6-256 XMSSMT-i-SHAKE-60/6-256 −2.74% −1.30% 0.38% −1.30%
XMSSMT-SHAKE-60/12-256 XMSSMT-i-SHAKE-60/12-256 −0.87% −1.39% −6.69% −1.39%
XMSSMT-SHAKE-20/4-512 XMSSMT-i-SHAKE-20/4-512 1.06% −0.73% −1.80% −0.73%
XMSSMT-SHAKE-40/4-512 XMSSMT-i-SHAKE-40/4-512 −1.74% −0.71% −0.37% −0.71%
XMSSMT-SHAKE-40/8-512 XMSSMT-i-SHAKE-40/8-512 1.56% −0.73% 1.26% −0.73%
XMSSMT-SHAKE-60/6-512 XMSSMT-i-SHAKE-60/6-512 −1.17% −0.71% −0.25% −0.71%
XMSSMT-SHAKE-60/12-512 XMSSMT-i-SHAKE-60/12-512 0.96% −0.73% −0.88% −0.73%

XMSSMT-SHAKE256-20/2-256 XMSSMT-i-SHAKE256-20/2-256 −4.03% −1.29% −0.33% −1.29%
XMSSMT-SHAKE256-20/4-256 XMSSMT-i-SHAKE256-20/4-256 −2.69% −1.38% 0.12% −1.38%
XMSSMT-SHAKE256-40/4-256 XMSSMT-i-SHAKE256-40/4-256 −4.52% −1.29% −9.14% −1.29%
XMSSMT-SHAKE256-40/8-256 XMSSMT-i-SHAKE256-40/8-256 −3.19% −1.39% −3.51% −1.39%
XMSSMT-SHAKE256-60/6-256 XMSSMT-i-SHAKE256-60/6-256 −5.15% −1.30% −7.87% −1.30%
XMSSMT-SHAKE256-60/12-256 XMSSMT-i-SHAKE256-60/12-256 −3.20% −1.39% −5.03% −1.39%
XMSSMT-SHAKE256-20/2-192 XMSSMT-i-SHAKE256-20/2-192 −4.28% −1.62% −10.52% −1.62%
XMSSMT-SHAKE256-20/4-192 XMSSMT-i-SHAKE256-20/4-192 −2.63% −1.78% −8.72% −1.78%
XMSSMT-SHAKE256-40/4-192 XMSSMT-i-SHAKE256-40/4-192 −4.71% −1.63% −4.03% −1.63%
XMSSMT-SHAKE256-40/8-192 XMSSMT-i-SHAKE256-40/8-192 −5.45% −1.78% −8.15% −1.78%
XMSSMT-SHAKE256-60/6-192 XMSSMT-i-SHAKE256-60/6-192 −5.64% −1.63% −6.37% −1.63%
XMSSMT-SHAKE256-60/12-192 XMSSMT-i-SHAKE256-60/12-192 −3.59% −1.78% −4.83% −1.78%

29

	Revisiting the Constant-sum Winternitz One-time Signature with Applications to SPHINCS+ and XMSS

