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9DTact: A Compact Vision-Based Tactile Sensor for Accurate 3D
Shape Reconstruction and Generalizable 6D Force Estimation

Changyi Lin, Han Zhang, Jikai Xu, Lei Wu and Huazhe Xu

Abstract—The advancements in vision-based tactile sensors
have boosted the aptitude of robots to perform contact-rich
manipulation, particularly when precise positioning and contact
state of the manipulated objects are crucial for successful
execution. In this work, we present 9DTact, a straightforward
yet versatile tactile sensor that offers 3D shape reconstruction
and 6D force estimation capabilities. Conceptually, 9DTact is
designed to be highly compact, robust, and adaptable to various
robotic platforms. Moreover, it is low-cost and easy-to-fabricate,
requiring minimal assembly skills. Functionally, 9DTact builds
upon the optical principles of DTact and is optimized to achieve
3D shape reconstruction with enhanced accuracy and efficiency.
Remarkably, we leverage the optical and deformable properties
of the translucent gel so that 9DTact can perform 6D force
estimation without the participation of auxiliary markers or
patterns on the gel surface. More specifically, we collect a dataset
consisting of approximately 100,000 image-force pairs from 175
complex objects and train a neural network to regress the 6D
force, which can generalize to unseen objects. To promote the
development and applications of vision-based tactile sensors, we
open-source both the hardware and software of 9DTact, along
with a comprehensive video tutorial, all of which are available
at https://linchangyi1.github.io/9DTact.

Index Terms—Force and Tactile Sensing; Perception for Grasp-
ing and Manipulation

I. INTRODUCTION

TACTILE sensing, which provides physical properties and
spatial state of contact objects, is vital for robots to inter-

act with the real world. With the help of cameras, vision-based
tactile sensors [1, 2, 3, 4, 5] are able to sense the deformation
of the gel surface approaching human-scale resolution. The
acquired high-resolution information enables robots to perform
stable and accurate robotic manipulation tasks such as object
insertion [6, 7] and cable manipulation [8, 9]. Despite the
potential benefits of these sensors, their adoption within the
robotics community has been limited due to various factors
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such as the lack of compactness, the complexity of fabrication,
high cost of acquisition, fragility and instability during use,
and deficient functional capabilities.

In this work, we present 9DTact, a vision-based tactile
sensor equipped with the following merits, aiming to overcome
the drawbacks of previous counterparts.

• Hardware. Our sensor not only excels in specifications,
it can also be fabricated in a convenient manner. With
iterations of optimization in illumination, structure, crafts,
and materials, 9DTact is designed to be compact, robust,
and adaptable to various robotic platforms. Furthermore,
9DTact is an affordable and easily assembled sensor that
only requires accessible components, standard machining
processes, and minimal assembly skills.

• Software. 9DTact is a versatile sensor capable of both
accurate 3D shape reconstruction and generalizable 6D
(1D normal, 2D shear, and 3D torque) force estimation.
The new design and simple calibration method improve
the accuracy and efficiency of 3D shape reconstruction.
Inspired by the principles of DTact [1] that pixels cor-
responding to thinner areas become darker, we observe
another interesting phenomenon that pixels corresponding
to bulging areas become brighter, and the in-plane motion
of the contact object induces accompanying movement
of the brighter pixels. Based on this finding, we extract a
dense deformation representation from the original tactile
image for force estimation, where no auxiliary markers
or patterns are needed. Making use of a neural network
trained on approximately 100,000 pairs of deformation
representation and 6D force sampled from 175 objects,
9DTact could estimate accurate 6D force with general-
ization to unseen geometries and objects.

• Open-Source. We would like to clear the obstacles as
possible for building and utilizing tactile sensors such
as 9DTact in the robotics community. Hence, we open-
source everything about 9DTact including its design files,
codes, datasets, and pre-trained models. Furthermore, we
also provide a comprehensive video tutorial that docu-
ments the entire process of replicating a 9DTact sensor,
including a bunch of experiences for simplifying and
improving the manufacturing processes.

The remainder of this paper is organized as follows. We
introduce related work on hardware designs and force esti-
mation methods of vision-based tactile sensors in Section II.
The details of 9DTact design are described in Section III. We
then introduce the improvements of 3D shape reconstruction
in Section IV. Next, we present the principle, implementation,
and performance of 6D force estimation in Section V. Finally,
the conclusion is summarized in Section VI.
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II. RELATED WORK

A. Compact Vision-Based Tactile Sensors for 3D Shape Re-
construction

Vision-based tactile sensor GelSight [2] leverages the pho-
tometric stereo technique [18] to achieve 3D shape recon-
struction of its sensing surface. Following, many GelSight-like
sensors [10, 19, 3] improve the designs to be more compact
to mount them in grippers or dexterous hands. However, their
reliance on the photometric stereo technique, which is highly
dependent on the uniformity and reflection of the internal
illumination, makes them challenging to replicate due to strict
requirements on material preparation, fabrication processes,
and assembly skills. Consequently, researchers lacking hard-
ware experience must purchase commercial products [4, 5].

To address the manufacturing challenges mentioned above,
DTact [1] leverages the reflection property of translucent elas-
tomer for 3D shape reconstruction, which has demonstrated
comparable accuracy, superior robustness and surface shape
extensibility. Based on this promising principle, 9DTact is
carefully designed to simultaneously possess exceptional phys-
ical characteristics including compactness, robustness, and af-
fordability as highlighted in Table I. Moreover, 9DTact is easy-
to-fabricate and open-sourced, which expands its potential as
a general vision-based tactile sensor.

B. Deformation Representation for 6D Force Estimation

On vision-based tactile sensors with gel surfaces, an ap-
plied force induces deformation. Therefore, the methods for
force estimation generally consist of the following three key
elements.

• Deformation visualizer: the physical medium for visu-
alizing the full-dimensional deformation of the gel into
visual features for the camera.

• Deformation representation: the information extracted
from the visual features.

• Inferring method: the method for decoupling force from
the deformation representation.

As outlined in Table II, tactile sensors capable of 3D
shape reconstruction often incorporate a marker array or a
pattern on their sensing surface as a common method for
force estimation. GelSight [2] employs Convolutional Neural
Networks (CNNs) [11] to predict force from tactile im-
ages, while GelSlim [12] utilizes the inverse Finite Element
Method (iFEM) [13] to infer force based on the 3D motions
of markers. However, the sparsity of the marker array limits
its capacity to fully capture deformation across the entire gel
surface, leading to validations on only a few selected objects
with simple geometries. Similar deformation representation
is used in DelTact [14] but with more data for computing
the coefficient matrix. To enrich the information contained in
the deformation representation, DenseTact 2.0 [17] develops a
special fabrication process to paint a continuous pattern, and
employs CNNs for predicting 6D force.

Although 9DTact could potentially adopt the method of
painting pattern for force estimation, there are inherent draw-
backs with this method. Specifically, the painted pattern,
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(a) Exploded View:

(b) Schematic Diagram:

Figure 1: Design of 9DTact. (a) The exploded view of 9DTact. The compo-
nents labeled as 1 are screws for connecting the sensor base and the sensor
shell. The components labeled as 3 and 7 are both heat-set threaded inserts.
(b) The schematic diagram of 9DTact.

being non-reflective to directional lights, compromises the
sensor’s 3D shape reconstruction capability within the regions
it covers [19], meaning that there is a trade-off between the
two functionalities. Moreover, crafting the pattern necessi-
tates specialized equipment and expertise. Consequently, the
method of painting pattern is incompatible with our objectives
of maintaining the accuracy of 3D shape reconstruction and
simplifying the sensor fabrication.

Surprisingly, we find that 9DTact, without any painted pat-
tern, naturally possesses a dense gel flow. Such flow is innate
from the optical and deformable properties of the translucent
gel. Moreover, the flow reflects the full-dimensional deforma-
tion of the gel. This phenomenon not only helps extract dense
deformation representations to perform 6D force estimation
with generalization to unseen objects, but also preserves the
3D shape reconstruction quality, and simplifies the fabrication.

III. 9DTACT SENSOR DESIGN

A. Design Goals

Throughout the fabrication, installation, and utilization of
the sensor, we aim to achieve the following objectives. To
lower the barrier of fabrication, the components should be
readily accessible and the assembly process should require
minimal professional expertise. For installation, the sensor
should possess a compact structural configuration that allows
installation in constrained spaces, such as within the fingertips
of dexterous hands. Regarding utilization, the sensor should
exhibit robustness in both physical and functional aspects, as
well as adaptability to various computing platforms.

In the following section, we will demonstrate how we
achieve these goals by providing a detailed description of each
component shown in Fig. 1 (b).



LIN et al.: 9DTACT: A COMPACT VISION-BASED TACTILE SENSOR 3

Table I: Comparison of GelSight, GelSlim 3.0, DIGIT, GelSight-Mini, DTact, and 9DTact. (∗Manufacturing of 1000 pieces. †Commodity price.)

Sensor Dimension [mm3] ↓ Sensing Area [mm2] ↑ D/A Ratio [mm] ↓ Weight [g] ↓ FPS ↑ Cost[$] ↓

GelSight [10] 80× 40× 40 = 128000 252 508 NA 90 30
GelSlim 3.0 [3] 80× 37× 20 = 59200 675 88 45 90 25∗

DIGIT [4] 36× 26× 33 = 30888 19× 16 = 304 102 20 60 15∗ / 300†

GelSight-Mini [5] 32× 28.5× 28 = 25536 19× 15 = 285 90 20.8 25 499†

DTact [1] 45× 45× 47 = 95175 24× 24 = 576 165 78 60 34

9DTact (Ours) 32.5× 25.5× 25.5 = 21133 24× 18 = 432 49 20 90 15

Table II: Comparison of the methods and configurations utilized for force estimation by GelSlim 2.0, DelTact, DenseTact 2.0, and 9DTact.

Sensor Deformation Visualizer Deformation Representation Infer Method Validation Objects Collection State

GelSight [2] Black marker array Marker pixels in raw image CNNs [11] 3 simple objects Dynamic
GelSlim 2.0 [12] Black marker array 3D motions of markers iFEM [13] 1 sphere Static
DelTact [14, 15] Colorful dense pattern Vectors field from optical flow NHHD [16] 5 spheres Static
DenseTact 2.0 [17] Black randomized pattern Pattern pixels in raw image CNNs 10 simple objects Static

9DTact (ours) Only original gel Dense gel flow image CNNs 175 complex objects Dynamic

B. Details of the Components

Camera. In order to capture the sensor’s contact surface
as comprehensively as possible, we select an OV5647 camera
with a wide Field Of View (FOV) of 160 degrees and attach it
to the sensor base using 3M glue. The camera occupies a small
space and is also adaptable to various computing platforms.
It can be connected to the Camera Serial Interface (CSI)
port of Raspberry Pi Zero directly or to the Universal Serial
Bus (USB) port with an off-the-shelf CSI-to-USB transfor-
mation board. In this work, we choose the latter connection
format to use the camera with a desktop.

LED board. In the previous version, DTact sensor [1], the
utilization of an LED ring may produce uneven illumination,
characterized by a brighter light intensity at the center than
that at the periphery. To mitigate this problem, we design a
compact LED board with eight LEDs evenly arranged in a
rectangular shape on it as shown in Fig. 2 (a). Furthermore,
we incorporate a CN5711 integrated circuit to regulate the
current inputs for the LEDs, which helps to provide stable
and consistent illumination for the sensor. The LED board is
secured to the sensor base by means of four locating holes
and is powered by a 5V USB port.

Sensor base. The sensor base, which is used to secure
the camera and the LED board, is 3D printed with black
nylon material (HP3DHR-PA12) that has high strength and
toughness. Furthermore, four M2 heat-set threaded inserts
(labeled as 3 in Fig. 1 (a)) are installed in the sensor base,
serving as connectors between the 9DTact sensor and other
platforms such as robot grippers and dexterous hand fingers.

Sensor shell. Attaching with the acrylic window that pro-
vides a clear window for the camera, the sensor shell serves
as a container for the transparent gel layer. It is 3D printed
with white nylon (FS3300PA) material which exhibits superior
durability. Since the white nylon material is not opaque, the
inner base layer of the sensor shell allows light to transmit
from the LED board and also helps to diffuse the light. Four
M2 heat-set threaded inserts (labeled as 7 in Fig. 1 (a)) are
also mounted in the bottom of the sensor shell so that it can
be connected to the sensor base with four M2 screws.

Transparent gel layer. The transparent gel layer not only

facilitates the diffusion of light to a more uniform distribution,
but also serves as a transitional propagation medium with
optical properties similar to those of the translucent gel layer,
which helps to mitigate the issue of excessive reflection that
can occur when light passes through air or other media.
Compared to ELASTOSIL® RT 601 silicone used in [1],
Hongye Jie® 9345 silicone (mixing ratio 1:1, shore A hardness
45) is easier to remove air bubbles with a vacuum pump.
Therefore, we choose it as the material of the transparent
gel layer. The mixed bubble-free silicone is poured into the
sensor shell until filled. Due to the inadequate levelness of
the base surface of the thermostatic oven, the sensor shell
is initially placed on a horizontal optical platform at a room
temperature of 25 ℃ for 4 hours to allow the silicone to
solidify. Subsequently, the sensor shell is transferred to the
thermostatic oven maintained at 50 ℃ for a duration of 6
hours to ensure complete hardening of the silicone.

Acrylic window. In the DTact sensor [1], the acrylic
window is designed to align with the inner dimensions of
the sensor shell. As a result, an air gap often exists between
the transparent gel layer and the acrylic window after the
transparent silicone cures, as Fig. 2 (b) illustrates. This is
because the rough inner walls of the sensor shell have much
higher adsorption capacity than that of the smooth surface of
the acrylic window. The air gap is squeezed out when the
sensor comes into contact with objects; thus the tactile image
brightens overall because the light from the translucent gel
layer transmits to the camera without decaying through the
air gap. To eliminate this air gap, we reduce the size of the
acrylic window, so that the rough inner base of the sensor shell
increases the downward adsorption force to the transparent gel
layer. The acrylic window is securely attached to the nested
frame of the sensor shell with waterproof glue.

Translucent gel layer. The translucent gel layer is used
to reflect light, which forms the fundamental principle of the
3D shape reconstruction function of 9DTact. In the previous
version as described in [1], a mold is attached to the sensor
shell, and the translucent silicone is poured into the mold
and left to cure to the translucent gel layer. Although this
method is relatively easy to fabricate and install, it has some
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Figure 2: Design improvements of 9DTact. (a) Eight LEDs distribute in a rectangular shape on the LED board. (b) The acrylic window is resized to avoid
the generation of an air gap. (c) The mold used for fabricating the translucent gel layer is secured with eight screws. (d) The four sides of the translucent gel
layer are also coated with black gel to prevent ambient light from entering. (e) Two reference images captured without and with installing the isolation ring.

drawbacks. For instance, the thickness of the sensor shell is
increased due to the requirement of four holes to install the
mold. Furthermore, the success rate of curing the translucent
silicone is reduced, since only four screws can not provide
sufficient force to secure the mold in place. To address these
issues, in 9DTact, we develop a base board and attach it to
the sensor shell through the four heat-set threaded inserts. The
acrylic mold for the translucent gel layer is then connected to
the base board using eight pairs of M3 screws and nuts, as
shown in Fig. 2 (c). The tightness resulting from this fastening
mechanism ensures that the mold remains stable throughout
fabrication, thus strongly guaranteeing successful outcomes.
In addition, to augment the adhesive force of the translucent
gel layer, its size is intentionally designed to exceed the inner
dimensions of the sensor shell as Fig. 1 (b) shows. The
material for the translucent gel layer is translucent Posilicone®

DRSGJ02 silicone (mixing ratio: 1: 1, shore A hardness 5).
After pouring the mixed bubble-free silicone into the mold, it
takes 6 hours for the silicone to cure at 25 ℃.

Black gel layer. The black gel layer serves two purposes.
First, it absorbs the inner light that transmits through the
translucent gel layer. Second, it prevents ambient light from
entering the translucent gel layer. However, in the case of the
DTact sensor [1], only the upper surface of the translucent
gel layer is coated with a thin black gel layer. This inevitably
results in ambient light transmitting into the translucent gel
layer through its four sides, leading to fluctuations in the
brightness of tactile images. Therefore, we replace the mold
for the translucent gel layer after it cures with one that has
larger thickness and inner frame size, which ensures that the
four sides of the translucent gel layer are also covered with
black gel, as shown in Fig. 2 (d). Instead of using the same
silicone as the translucent gel layer for the black gel layer,
we opt for Smooth-On® Ecoflex 00-30 silicone (mixing ratio:
1: 1, shore 00 hardness 30) for its superior durability. To
give it a black color, we add some black silicone pigment
to the mixture. With the LED board lighting from below, we
apply the black silicone onto the translucent gel layer until it
completely blocks the light.

Isolation ring. The surface of the acrylic window reflects
light from the vertical surfaces of the inner base layer of the
sensor shell, which can interfere with the light transmission in
the peripheral areas of the translucent gel layer. This is because
the light from the inner base layer is much stronger than that
from the translucent gel layer. As a result, the camera loses
its ability to sense changes in light from these areas of the
contact surface as the left image in Fig. 2 (e) shows. To this
end, we add the isolation ring, 3D printed with black nylon

Table III: The bill of materials (BOM) for fabricating a 9DTact sensor.

Component Description Process

Glue YLG-YKL500

Off-the-shelfNuts 8 M2-3-5, 8 M3
Screws 4 M2-6, 8 M3-30
Camera Frank-S15-V1.0-160◦

LED Board 28× 21× 4mm PCB soldering

Isolation Ring Black nylon (HP3DHR-PA12)
3D printingSensor Base Black nylon (HP3DHR-PA12)

Sensor Shell White nylon (FS3300PA)

Acrylic Window 2mm thick acrylic board

Laser cuttingBase Board 3mm thick acrylic board
The First Mold 2.5mm thick acrylic board
The Second Mold 2.8mm thick acrylic board

Transparent Gel Hongye Jie® 9345 Silicone
processingTranslucent Gel Posilicone® DRSGJ02

Black Gel Smooth-On® Ecoflex 00-30

material (HP3DHR-PA12), to prevent such strong light from
transmitting from the vertical surfaces of the inner base layer
to the acrylic window. The right image in Fig. 2 (e) shows the
corrected sensed tactile surface.

C. Conclusion and Comparison of the Sensor Design

Table I compares 9DTact with existing flattened compact
vision-based sensors, while Table III summarizes some de-
tailed information for each component. Here, we summarize
the outstanding characteristics of 9DTact:

• Compact. The 9DTact sensor is remarkably compact,
with the size of only 32.5mm×25.5mm×25.5mm, which
is approximately 22% the size of the DTact sensor [1].
With the smallest volume among the sensors listed in Ta-
ble I, 9DTact is adaptable to be installed in a wide range
of robotic platforms, from grippers to dexterous hands.
Moreover, 9DTact features a relatively large sensing area,
resulting in the smallest dimension-to-sensing area (D/A)
ratio of all the sensors in Table I.

• Robust. Our improvement in the black gel layer makes
9DTact robust to dynamic ambient light. Furthermore, in
Section V-B, we press the objects with sharp geometries
against a single 9DTact sensor to collect over 100, 000
images. Remarkably, the sensor factors, such as imaging
and illumination, remain stable throughout the experi-
ment, and the contact surface shows no visible signs of
damage.

• Easy-to-fabricate and low-cost. As summarized in Ta-
ble III, the components are fabricated with minimal effort,
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Figure 3: Pipeline for 9DTact’s two key functions. 9DTact utilizes a modeling-based method for 3D shape reconstruction and a learning-based method for
6D force estimation. The reference image is captured when there is no contact on 9DTact, while the tactile image is captured when a badge with the text
“9DTact” is pressed on 9DTact.

(a) (b) (c) (d) (e)

Figure 4: Camera calibration. (a) The calibration board features a cylinder
array. (b) The reference image. (c) The tactile image is captured when pressing
the calibration board on 9DTact. (d) Imprints from the calibration board are
detected. (e) The result of rectifying and cropping the image in (d).

utilizing highly commercialized conventional machining
processes such as 3D printing, laser cutting, and printed
circuit board (PCB) soldering. Besides, each component
is subject to strict mechanical positional constraints dur-
ing assembly, thereby minimizing the need for addi-
tional adjustments and reducing performance differences
in sensors caused by variations in assembly. To further
support the replication of our 9DTact sensor, we also
provide a step-by-step video tutorial that details the entire
fabrication and assembly process, enabling researchers
with varying levels of experience to easily reproduce the
sensor on their own. Furthermore, building a 9DTact only
costs about $15, which includes two reusable molds.

IV. 3D SHAPE RECONSTRUCTION

A. Reconstruction Pipeline
9DTact inherits the 3D shape reconstruction method of

DTact [1], the pipeline of which is illustrated in Fig. 3. Both
the tactile and reference images are converted to grayscale
images because the reconstruction process only relies on pixel
luminance. The difference image, calculated by subtracting
the reference image from the tactile image, is mapped to a
depth map with a calibrated mapping list. This mapping list
is calibrated using the “single image” calibration approach
proposed in [1], which is efficient for requiring only a single
image for calibration. In addition, we apply two continuous
Gaussian filters to denoise the depth map. Finally, the depth
map is converted to point clouds to render and visualize the
sensor surface.

Figure 5: 3D shape reconstruction results of three set screws (M4, M6, and
M8), a ball array, a micro USB port, and a wheel hub model. They are visual
images, tactile images, and reconstructed point clouds from top row to bottom.

B. Camera Calibration

In order to obtain accurate tactile images, we need to rectify
the optical distortion introduced by the wide-angle camera
and the three gel layers. The marker-based image rectification
method introduced by GelSlim3.0 [3] has the potential to cor-
rect distortion caused by multiple factors. However, markers
are not painted on 9DTact for the reasons described in II-B.
Therefore, a calibration board, as shown in Fig. 4 (a), is
designed with a cylinder array and a frame that fits into the
sensor shell of 9DTact. When the calibration board is pressed
on the sensor surface, the cylinders imprint a grid array of
virtual markers as shown in Fig. 4 (c). Fig. 4 (d) shows that
markers are detected using algorithms from OpenCV [20].

In contrast to GelSlim3.0 [3] that regards the outermost
points as anchor points, we choose the five relatively cen-
tral points in blue because of their minimal aberration. The
rectified positions of other points in the image frame can be
computed by extending the five anchor points to equidistant
grids. With the detected positions and rectified positions of
all markers, we can compute the mapping array to rectify
image. Finally, we crop the rectified image from 640 × 480
resolution to 460×345 as shown in Fig. 4 (e). In summary, the
virtual markers-based image rectification method employed by
9DTact enables simultaneous calibration of these parameters:



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2023
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Figure 6: Deformable property of the translucent gel. The dotted line rep-
resents the original thickness of the gel. The areas that are thinner than the
original thickness are colored in red, while the thicker areas are in green. (a)
The object is pressed on the gel. (b) The object is dragged to the right after
being pressed.

1) The lens distortion;
2) The pixel position on the tactile image that corresponds

to the sensor surface’s central position;
3) The physical length on the sensor surface corresponding

to one pixel of the tactile image.

C. Improvements of 3D Shape Reconstruction

Although DTact [1] demonstrates excellent performance in
shape reconstruction, it is limited to reconstructing only the
central area of its surface due to uneven illumination and sig-
nificant disturbance from environmental light in the peripheral
area, as discussed in III-B. In contrast, 9DTact, through its
refined design and advanced calibration technique, achieves
comprehensive surface reconstruction with an incremental yet
significant improvement in precision.

To validate its performance, 9DTact employs the same
approach as proposed in [1]. This involves pressing a metal
ball, different in radius from that used in the calibration phase,
at various positions on the sensor surface to capture 20 distinct
images. These images are then processed to compute actual
depth maps, using circle detection algorithms in OpenCV [20].
The quantitative results of 9DTact’s reconstruction precision
yield a mean absolute error (MAE) of 0.0462mm and a
standard deviation (Std) of 0.0304mm. While DTact records
an MAE of 0.0476mm and an Std of 0.0352mm.

Fig. 5 showcases several reconstruction examples, highlight-
ing the intricate geometric details captured by 9DTact.

V. 6D FORCE ESTIMATION

A. Dense Deformation Representation

As mentioned in IV, the pixels within the contact areas
become darker and are utilized to compute the 3D contact
geometry. Surprisingly, we also observe a concurrent increase
in the luminosity of pixels surrounding the contact areas. To
elucidate this phenomenon, it is necessary to consider the flow
properties of the gel.

As a hyper-elastic material, the pressed gel tends to flow
outward to its neighboring regions, resulting in an increase in
thickness in the surrounding areas, as shown in Fig. 6 (a).
Similarly, when the contact object applies shear force or
twist force, the surrounding gel will flow to accumulate along
the moving direction, as shown in Fig. 6 (b). Furthermore,
according to the principle that thinner contact areas result in
darker pixels, the thicker surrounding regions induce brighter
pixels. Eventually, as the visualization images illustrated
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Figure 7: A cylinder and a star-shape object contact with 9DTact respectively.
The object is firstly pressed onto 9DTact, and then dragged forward, dragged to
the right, and twisted clockwise while maintaining contact. The tactile images
are captured by the camera, and they are visualized as the visualization images
with the darker areas in red and the brighter areas in green.

in Fig. 7 with darker areas colored red and brighter areas
green, the green pixels turn to be much brighter in the object’s
moving direction. Therefore, with the darker areas extracting
the concave deformation information and the brighter areas
extracting both the convex deformation and shear deformation
information, deformation in all directions can be encoded in
such dense deformation representation as the visualization
images in Fig. 7 show.

Our goal is to reconstruct the 6D force from the described
dense deformation representation. It is unlikely to use numer-
ical methods such as iFEM because the physical thickness of
the bulging areas can not be acquired. Therefore, we leverage
deep convolutional neural networks, which have shown great
potential in image information extraction [21]. Following, we
will introduce physical configurations to collect dataset, details
on model training, and results of 6D force estimation.

B. Data Collection and Splitting

Previous tactile image datasets [17, 22, 23, 24] are mainly
collected by mounting several objects on an autonomous ma-
chine, resulting in limited flexibility due to the inconvenience
of object swapping, and thus, severely restricting the diversity
of contact geometry. Furthermore, the process of force label
collection dose not require recording the pose of the contact
object. Therefore, we opt to manually press objects to increase
the diversity of objects and the flexibility of pressing and
swapping them.

We handpick 175 CAD models with various geometric
shapes from the Thingi10K [25] dataset, and 3d-print them
with black resin material, as shown in Fig. 8 (a). For the
hardware setup, as Fig. 8 (b) shows, 9DTact is fastened on a
BOTA MiniONE Pro 6-axis F/T sensor which provides precise
6D force labels. To efficiently collect data, we develop a
program to autonomously sample image-force pairs so that
we only need to press the objects on 9DTact in different
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Table IV: Configuration and hyper-parameters for force estimation deep model training.

Model Batch size Learning rate Pretrained Optimizer Loss Function Total epoch GPU

Densenet-169 64 5× 10−4 No Adam MAE (Sum) 200 Nvidia A40

Table V: Validation results of 6D force estimation on two test sets (force in N , torque in Nm).

Splitting Method Training set Test set Selected epoch Mean absolute error (MAE) Standard deviation (Std)

Standard 90417 10000 153 [0.30, 0.35, 0.28, 0.009, 0.008, 0.001] [0.26, 0.30, 0.32, 0.009, 0.008, 0.001]
Object-based 89995 10422 189 [0.35, 0.40, 0.41, 0.011, 0.010, 0.002] [0.31, 0.36, 0.44, 0.015, 0.014, 0.003]

(a) (b)

F/T Sensor

9DTact Sensor

Installation Base

X
Y

Z

Figure 8: Physical configurations for dataset collection. (a) 175 objects with
various geometric shapes are 3D-printed for collecting data. (b) The 9DTact
sensor is installed on a BOTA MiniONE Pro 6-axis F/T sensor to collect 6D
force labels.

orientations evenly. More specifically, a data pair is saved
only when contact is detected and the 6d force is significantly
different from all the forces saved during the same continuous
contact period.

As introduced in Section V-A, 9DTact is able to extract
pressing, dragging, and twisting motions of the contact ge-
ometry. Therefore, we not only press the objects but also
drag and twist them on 9DTact to collect data with various
contact status. Finally, we collect 100,417 image-force pairs
totally from a single 9DTact sensor, taking about 10 hours
cumulatively.

Leaving the remaining data as the training set, the test set
is selected based on two splitting methods.

• Standard splitting. 10000 pairs of data are randomly
selected from all data as test set. This splitting strategy
is generally used to test the model’s in-distribution gen-
eralization capability.

• Object-based splitting. 18 of the 175 objects are ran-
domly selected as test objects, and all data sampling from
these objects serves as test set, which consists of 10422
pairs of data in our case. This splitting strategy aims to
test the model’s ability to generalize to unseen objects.

C. Details of the Neural Network

Input images. In order to provide sufficient and well-
defined physical information for the neural network, the input
image’s three channels are replaced by the darker image, the
brighter image, and the grayscale reference image, as shown
in Fig. 9. The darker image, which contains information about
the contact geometry, is generated by subtracting the tactile
image from the reference image. It is the same as the difference
image used for shape reconstruction as illustrated in Fig. 3.

Brighter channel Input imageDarker channel Reference channel

Figure 9: Input image for predicting 6D force. It consists of three channels:
the darker channel, the brighter channel, and the reference channel.

The brighter image reveals information about the dragging and
twisting motions of the contact geometry, and it is obtained
in a similar way as the darker image, but with the objects
of subtraction reversed. The reference image is captured each
time the sensor is initiated, which differs slightly for different
continuous usage periods and thus provides information of the
sensor’s initial state.

Neural Networks. We select Densenet [26] as the neural
network for predicting the 6D force. We utilize the implemen-
tation of Densenet from PyTorch library [27], and modify the
output channel of the fully connected layer to 6. Two models
are trained on datasets split using the two splitting methods,
with the same training configuration depicted in Table IV.
We also train Resnet [28] and ViT [29], but they perform
worse than Densenet. Therefore, we only present the details
and following results of Densenet, as our focus in this paper is
to validate that our proposed dense deformation representation
is able to provide comprehensive deformation information.

D. Results of 6D Force Estimation

As the quantitative validation results in Table V shows, the
models are able to estimate accurate 6D force and generalize to
both unseen contact status and objects. For standard validation,
the absolute mean errors are 0.307N for forces and 0.006Nm
for torques. For object-based validation, the errors are 0.370N
and 0.0077Nm respectively. While these quantitative metrics
are informative, direct comparisons of 9DTact with other
sensors remains complex for several reasons. First, in contrast
to other methods listed in Table II that validate their methods
with a small set of simple objects, our test set comprises im-
ages with intricate geometries and in-plane motions as shown
in Fig. 10. Second, different studies report varied metrics for
normal and tangential force estimation such as an RMSE of
0.62N in [2] and an MAE of 0.41N in [17]. Lastly, inherent
challenges in hardware comparisons arise due to factors such
as resource limitations for sensor replication and performance
variations attributed to the fabrication process.

Drawing from the comprehensive analysis of methodology,
dataset, and results, our method for 6D force estimation
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Input Image
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0.0029

0.073

0.0028

0.076
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0.089

0.0046

0.094

0.0008
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Figure 10: Results from the test set, using the standard splitting method, highlight our dataset’s complexity in both geometry and motion dynamics. The
average force and torque errors demonstrate the generalization capability of the trained deep model.

exhibits superiority in physical simplicity due to the integration
of the optical and deformable properties of the translucent gel,
in accuracy with the help of the dense information included in
the proposed deformation representation, and in generalization
capability by learning from the large and resourceful dataset.

VI. CONCLUSION

In this work, we present 9DTact, a general vision-based
tactile sensor capable of 3D shape reconstruction and 6D force
estimation. Specifically, we meticulously select and design
each component of 9DTact to make it compact for installation,
robust for illumination, durable for long-term usage, and sim-
ple for reproduction. We also improve 3D shape reconstruction
to have a larger field ratio for reconstruction, more effective
calibration procedures, and higher accuracy. Furthermore, un-
like conventional methods for force estimation using painted
markers, we extract a dense deformation representation from
the raw tactile image by integrating the optical and deformable
properties of the translucent gel. Finally, we train a force
estimation neural network on a large dataset sampling from
various objects with complex geometry. Empirical results show
that it not only can estimate the 6D force accurately, but also
can generalize to unseen geometries and objects.
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