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Abstract

We study the identification and estimation of long-term treatment effects by combining short-
term experimental data and long-term observational data subject to unobserved confounding.
This problem arises often when concerned with long-term treatment effects since experiments
are often short-term due to operational necessity while observational data can be more easily
collected over longer time frames but may be subject to confounding. In this paper, we uniquely
tackle the challenge of persistent confounding: unobserved confounders that can simultaneously
affect the treatment, short-term outcomes, and long-term outcome. In particular, persistent
confounding invalidates identification strategies in previous approaches to this problem. To ad-
dress this challenge, we exploit the sequential structure of multiple short-term outcomes and
develop three novel identification strategies for the average long-term treatment effect. Based
on these, we develop estimation and inference methods with asymptotic guarantees. To demon-
strate the importance of handling persistent confounders, we apply our methods to estimate the
effect of a job training program on long-term employment using semi-synthetic data.

Keywords: data combination, doubly robust estimation, long-term causal inference, proxy
variables, unobserved confounding.

1 Introduction

Empirical researchers and decision-makers are often interested in learning the long-term treatment
effects of interventions. For example, labor economists are interested in the effect of early childhood
education on lifetime earnings [Chetty et al., 2011], marketers are interested in the effects of pro-
motions on long-term revenue [Yang et al., 2020a], online platforms are interested in the effects of
webpage designs on users’ long-term behaviors [Hohnhold et al., 2015]. Since a long-term effect can
be quite different from short-term effects [Kohavi et al., 2012], accurately evaluating the long-term
effect is both difficult and crucial for comprehensively understanding the intervention of interest.

Learning long-term treatment effects is very challenging in practice because long-term outcomes
are seldom observed within the time frame of randomized experiments. For example, randomized
experiments in online platforms (often termed A/B tests within that context) usually last for only
a few weeks, and practitioners in the industry commonly recognize evaluation of long-term effects
as a paramount challenge [Gupta et al., 2019]. In contrast, observational data are often easier and
cheaper to acquire and can be collected retroactively, so they are more likely to include long-term
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outcome observations. Nevertheless, observational data are susceptible to unmeasured confounding,
which can lead to biased treatment effect estimates. Therefore, long-term causal inference is very
challenging using only experimental or observational data, either due to missing long-term outcome
(in experimental data) or unmeasured confounding (in observational data).

In this paper, we study the identification and estimation of long-term treatment effects by com-
bining both experimental and observational data. By combining these two different types of data,
we hope to leverage their complementary strengths, i.e., the randomized treatment assignments in
the experimental data and the long-term observations in the observational data. In particular, we
aim to tackle the presence of persistent confounding in the observational data, which cannot be
generally ruled out. That is, we allow some unobserved confounders to have persistent effects in
the sense that they can affect not only the short-term outcomes but also the long-term outcome.
Persistent confounders are prevalent in long-term studies. For example, in studying early childhood
education’s effect on lifetime earnings, students’ innate intelligence and/or familial support systems
can affect both short-term and long-term earnings. Our setup is summarized in the causal diagrams
in Figure 1.

A few previous works also consider data combination for long-term causal inference. Athey
et al. [2019], in a setting where the observational sample contains no information on the treatment,
rely on a surrogate criterion first proposed by Prentice [1989]. Athey et al. [2020], in the same
setting as considered in the current paper, assume a latent unconfoundedness condition. While
these conditions make no explicit reference to persistent confounding and its absence, a nontrivial
persistent confounder can generally violate these (see Appendix A for details). At the same time,
both settings are just identified, meaning the conditions imposed are minimal. Therefore, some
other conditions are needed in their place to guarantee identification while permitting more general
persistent confounding.

In this paper, we leverage an assumed sequential structure between multiple short-term out-
comes to tackle long-term causal inference in the presence of persistent confounders. Our new
identification and estimation strategies are based on using short-term outcomes as proxy variables
for the persistent confounders. To the best of our knowledge, this is the first time that the internal
structure of short-term outcomes is used to address unmeasured confounding in long-term causal
inference. Indeed, although Athey et al. [2019, 2020] also advocate using multiple short-term out-
comes, they view them as a whole without leveraging their internal structure. Our work therefore
also provides new insights on the special role of using multiple short-term outcomes in long-term
causal inference.

Our contributions are summarized as follows:

• We propose three novel identification strategies for the average long-term treatment effect in
the presence of persistent confounders. These identification strategies rely on three groups of
short-term outcomes, where two of these groups are used as informative proxy variables for
the unobserved confounders (Assumption 5). These short-term outcomes, together with the
long-term outcome, are assumed to follow a sequential structure encapsulated in a conditional
independence condition (Assumption 4).

• Based on each of the three identification strategies, we propose corresponding estimators
for the average long-term treatment effect. These estimators involve fitting two nuisance
functions that are defined as solutions to two conditional moment equations. Our estimation
procedures accommodate any nuisance estimator among many existing ones. We provide high
level conditions for the asymptotic consistency and asymptotic normality of our estimators.

• We evaluate the performance of our proposed estimators based on large-scale experimental
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A YS

X U

(a) Observational data.

A YS

X U

(b) experimental data.

Figure 1: Causal diagrams for observational and experimental data with persistent confounders.
Here A denotes the treatment, S denotes (multiple) short-term outcomes, Y denotes the long-
term outcome, X denotes covariates, and U denotes unobserved confounders. Confounders U in
both samples and the long-term outcome Y in the experimental data are unobserved, so they
are indicated by dashed circles. Note that unobserved confounders U can simultaneously affect
short-term outcomes S and the long-term outcome Y .

data for a job-training program with long-term employment observations. We combine part
of the experimental data and some semi-synthetic observational data with realistic persistent
confounding. We demonstrate that due to the persistent confounding, our proposed estimators
have smaller error than estimators that do not handle persistent confounding.

The rest of this paper is organized as follows. We first review the related literature in Section 2
and set up our problem in Section 3. Then we discuss our identification strategies in Section 4,
where each subsection features one different identification strategy. In Section 5, we present our
long-term treatment effect estimators and analyze their asymptotic properties. We further dicuss
some extensions in Section 6. In Section 7, we illustrate the performance of methods in a semi-
synthetic experiment. We finally conclude this paper in Section 8.

2 Related Literature

2.1 Surrogates

Our paper is related to a large body of biostatistics literature on surrogate outcomes; see reviews
in Weir and Walley [2006], VanderWeele [2013], Joffe and Greene [2009].

These literature consider using the causal effect of an intervention on a surrogate outcome
(e.g., patients’ short-term health) as a proxy for its treatment effect on the outcome of primary
interest (e.g., long-term health). To this end, many criteria have been proposed to ensure the
validity of the surrogate outcome. Examples include the statistical surrogate criterion [Prentice,
1989], principal surrogate criterion [Frangakis and Rubin, 2002], consistent surrogate criterion [Chen
et al., 2007], among many others. However, these criteria can easily run into a logical paradox
[Chen et al., 2007] or rely on unidentifiable quantities, showing the challenge of causal inference
when the primary outcome is completely missing. When multiple surrogates are available, Wang
et al. [2020], Price et al. [2018] consider transforming these surrogates to optimally approximate
the primary outcome. Their approaches can avoid the surrogate paradox discussed in Chen et al.
[2007]. Nevertheless, learning surrogate transformations requires having experimental data with
long-term outcome observations.

In contrast, our paper does not need long-term outcome observations in the experimental data
but only need them in observational data. Moreover, our paper does not view short-term outcomes
as proxies for the long-term outcome, so we avoid these previous surrogate criteria. Instead, we view
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them as proxies for unobserved confounders to correct for confounding bias. See also discussions
in Section 2.3.

2.2 Data Combination for Long-term Causal Inference and Decision-Making

Following Athey et al. [2019], some recent literature also combine experimental and observational
data, and rely on the statistical surrogate criterion, either to estimate cumulative treatment effects
in dynamic settings [Battocchi et al., 2021] or learn long-term optimal treatment policies [Yang
et al., 2020a, Cai et al., 2021b]. Chen and Ritzwoller [2021] derive the efficiency lower bound
for average long-term treatment effect in settings of Athey et al. [2019] and Athey et al. [2020].
Singh [2021, 2022] further develop debiased long-term treatment effect estimators based on machine
learning nuisance estimation. In contrast, Kallus and Mao [2020], Cai et al. [2021a] combine
two datasets that both satisfy unconfoundedness. Still, all of these works rule out persistent
confounding, which is the main problem tackled in this paper.

A concurrent and independent work by Ghassami et al. [2022] uses alternative conditions or
additional variables to alleviate latent confounding in long-term causal inference. They propose
three different identification strategies, and their proximal data fusion strategy is closely related
to our approach in Sections 4.1 and 4.2 and appendix D.1. Their approach requires auxiliary
proxy variables satisfying certain generic conditions (in addition to the short-term outcomes). In
contrast, our work specifically leverages the special sequential structure of multiple short-term
outcomes and shows how such short-term outcomes can proxy the confounders. This obviates
the need to search for external proxy variables and allows us to understand the different types of
confounders and which need to be controlled (see appendix E.2). Importantly, we develop both
estimation and inference methods with theoretical guarantees and validate them in a concret case
study. Moreover, we provide an alternative control function identification strategy in Section 6.2 and
study how the short-term outcomes may help weaken a widely assumed external validity condition
in Appendix E.3. These results have no analogues in Ghassami et al. [2022].

There is also growing interest in combining experimental and observational data to improve,
rather than enable, causal inference [e.g., Chen et al., 2021, Cheng and Cai, 2021, Yang et al.,
2020b,c, Colnet et al., 2020, Kallus et al., 2018, Rosenman et al., 2022, 2020, Yang and Ding, 2019].
In these works, the outcome of interest is observed in both types of data, so causal-effect identifi-
cation is already guaranteed by the experimental data. Instead, the aim of the data combination
is to reduce variance. In contrast to these works, in our setting, data combination is crucial for
causal identification since any one data set alone cannot identify the long-term treatment effect.

2.3 Proximal Causal Inference

Our identification proposals are related to how proximal causal inference deals with unmeasured
confounding by leveraging proxy variables [Tchetgen Tchetgen et al., 2020]. The seminal work of
Miao et al. [2016] demonstrated the identification of treatment effects with unobserved confounders
given two different types of proxy variables: negative control outcomes, which are not affected by the
treatment, and negative control treatments, which do not affect the outcome. Since then, a series of
works have proposed a variety of different estimation methods based on this identification strategy
[Kallus et al., 2021, Ghassami et al., 2021b, Deaner, 2021, Singh, 2020, Miao and Tchetgen, 2018,
Shi et al., 2020, Mastouri et al., 2021, Cui et al., 2020]. The proximal causal inference framework
has also been extended to longitudinal data analysis [Imbens et al., 2021, Ying et al., 2021, Shi et al.,
2021], mediation analysis [Dukes et al., 2021, Ghassami et al., 2021a], and off-policy evaluation and
learning [Bennett and Kallus, 2021, Tennenholtz et al., 2020, Qi et al., 2021, Xu et al., 2021].
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The existing proximal causal inference literature focus on a single observational dataset. In
contrast, in this paper we consider combining observational and experimental data. We view short-
term outcomes as proxy variables for persistent unmeasured confounders. However, all of these
short-term outcomes can be affected by the treatment (see Figure 3 below), so they do not satisfy
the proxy conditions in Miao et al. [2016]. In this paper, we establish novel identification strategies
that leverage the additional experimental data. See also discussions in Remark 2.

3 Problem Setup

We consider a binary treatment variable A ∈ A = {0, 1} where A = 1 stands for the treated group
and A = 0 stands for the control group. We are interested in the treatment effect on a long-term
outcome. Based on the potential outcome framework [Rubin, 1974], we postulate potential long-
term outcomes Y (0) ∈ Y ⊆ R and Y (1) ∈ Y ⊆ R, which would be realized were the treatment
assignment equal 0 and 1, respectively. In reality, we can observe at most one of the potential
outcomes per unit, corresponding to the actual treatment assignment, Y = Y (A).

We may in fact observe neither potential long-term outcome in short-term experiments that end
before these long-term outcomes can be observed. Nevertheless, it is usually still possible to observe
some short-term outcomes. We postulate potential short-term outcomes S(1) ∈ S, S(0) ∈ S, and
denote the observable realized short-term outcomes as S = S(A). In this paper, we considermultiple
short-term outcomes, so we generally understand S as a vector. We discuss our assumptions on
the inner structure of these short-term outcomes in section 3.2. Additionally, we can observe some
pre-treatment covariates denoted as X ∈ X .

We have access to two samples: an observational (O) sample with nO units and an experimental
(E) sample with nE units. We suppose that the observational sample is a random sample from
the population of interest, where for each unit i we can observe independently and identically
distributed tuples (Xi, Ai, Si, Yi). The experimental sample may be a selective sample from the
same population, where for each unit i we only observe (Xi, Ai, Si), but not the long-term outcome.
We use a binary indicator Gi ∈ {E,O} to denote which sample a unit i belongs to. Without loss
of generality, we can consider a combined i.i.d sample of size n = nO + nE from an artificial super-
population, namely, D = {(Gi, Xi, Ai, Si, YiI [Gi = O]) : i = 1, . . . , nO + nE}. We use P and E to
denote the probability measure and expectation with respect to this super-population, and use p(·)
to denote the associated probability density function or probability mass function, as appropriate.
We also denote the observational and experimental subsamples as DO and DE , respectively.

Our aim is to combine the observational and experimental samples in order to learn the long-
term treatment effect on the population associated with the observational data:

τ = µ(1)− µ(0), (1)

where µ(a) = E [Y (a) | G = O] .

Our results easily extend to the average on the experimental or combined population. We focus on
τ above for concreteness and we believe it captures the most commonly relevant estimand.

3.1 Basic Assumptions Characterizing the Observational and Experimental Data

We now describe the basic assumptions that characterize the experimental and observational data
sets as such. Unless otherwise stated, all of these assumptions are maintained throughout this
paper.
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Y (a)S(a)

X U

(a) Observational data.

A

a
Y (a)S(a)

X U

(b) Experimental data.

Figure 2: Single world intervention graphs (SWIG) corresponding to the causal diagrams in Fig-
ure 1.

The observational data is generally confounded, that is, conditioning only on X does not render
the treatment assignment independent of the potential short-term and long-term outcomes. Instead,
there exist some unobserved confounders U ∈ U that are needed to account for the association
between treatment and potential outcomes. See Figure 2a for a single world intervention graph
illustration [Richardson and Robins, 2013] when intervening on the variable A.

Assumption 1 (Observational data). For a ∈ {0, 1},

(Y (a), S(a)) ⊥ A | U,X,G = O, (2)

and 0 < P (A = 1 | U,X,G = O) < 1 almost surely.

Equation (2) means that U and X together account for all confounding in the observational
data, and generally the observed covariates X alone are not enough. Moreover, we impose the
overlap condition 0 < P (A = 1 | U,X,G = O) < 1, which is a standard assumption in causal
inference literature. Note that the existence of U is without loss of generality because we can
always take it to be the potential outcomes themselves. Because of the unobserved confounders U ,
the observational data alone is not enough to identify the treatment effect parameter τ in eq. (1).

In contrast to the observational data, the treatment assignments are assigned completely at
random in the experimental data. See Figure 2b for a single world intervention graph illustration.

Assumption 2 (Experimental Data). For a ∈ {0, 1},

(Y (a), S(a), U,X) ⊥ A | G = E, (3)

and 0 < P (A = 1 | G = E) < 1 almost surely.

Although unconfounded, the experimental data do not contain long-term outcome observations,
so the experimental data alone is not enough to identify the treatment effect either. This motivates
us to combine the observational and experimental data. To this end, we further impose the following
assumption permitting such combination.

Assumption 3 (External Validity). For any a ∈ {0, 1},

(S(a), U,X) ⊥ G, (4)

and, almost surely,

p(U,X | A = a,G = E)

p(U,X | A = a,G = O)
<∞. (5)
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A YS1 S2 S3

X U

(a) Observational data.

A YS1 S2 S3

X U

(b) Experiment sample.

Figure 3: Sequential structure of three groups of short-term outcomes.

Assumption 3 ensures that the two samples have enough commonality so it is meaningful to
combine them. Equation (4) in Assumption 3 means that the experimental data has external
validity, in that the distribution of (S(a), U,X) in the experimental data is the same as that in the
observational data (i.e., the population of interest). Similar assumptions also appear in previous
literature that attempt to combine different samples [e.g., Athey et al., 2020, 2019, Kallus and Mao,
2020].

In Section 6 we further relax eq. (4) to allow the distributions of covariates X to be different in
the two samples. Note that eq. (4) already allows the distributions of potential long-term outcome
Y (a) in the experimental and observational data to be different, so that the long-term treatment
effect on the experimental population can be different from our target.

Equation (5) in Assumption 3 means that the conditional distributions of (U,X) | A on the
experimental and observational data have enough overlap, which is also a common assumption in
missing data literature [Tsiatis, 2007].

3.2 Three Groups of Short-term Outcomes

To address general persistent confounding, we need some additional structure on the short-term
outcomes. In this paper, we consider leveraging multiple, sequential short-term outcomes. In
particular, we consider a partitioning of the short-term outcomes into three groups sorted in a
temporal order, writing the potential short-term outcomes as S(a) = (S1(a), S2(a), S3(a)) ∈ S1 ×
S2×S3 and their observed counterparts as S = (S1, S2, S3). Given this partitioning, we assume the
following conditional independence structure for the potential short-term and long-term outcomes.

Assumption 4 (Sequential Outcomes). For a ∈ {0, 1},

(Y (a), S3(a)) ⊥ S1(a) | S2(a), U,X,G = O, (6)

Assumption 4 requires that the effect of the first short-term outcome on the last short-term out-
come and the long-term outcome is mediated by the intermediate short-term outcome. Nonetheless,
all outcomes can be related by unobserved confounders, even in the experimental data, and the
treatment can affect all outcomes both directly and indirectly. This captures the sequential struc-
ture of the short-term and long-term outcomes (see Figure 3 for an example). For example, it
holds when the potential outcomes follow autoregressive structural equations of suitable orders
(see Example 2 below for a simple instance). Moreover, it holds when the potential outcomes
S1(a), S2(a), S3(a), Y (a) follow a Markov process, conditional on U,X. Markov models are widely
used in social sciences such as for modeling the dynamics of labor markets [Poterba and Summers,
1986, Mohapatra et al., 2007] as well as in medical sciences for modeling chronic-disease progression
[Marshall and Jones, 1995, Liu et al., 2013, Kay, 1986, Liu et al., 2013]. Note that previous work
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with multiple short-term outcomes usually views them as a single vector of short-term outcomes,
and does not put any structure on them [e.g., Athey et al., 2019, Kallus and Mao, 2020]. In con-
trast, assuming a sequential internal structure among these (Assumption 4) allows us to address
the challenge of persistent confounding, as we demonstrate in the next section.

We further assume that short-term outcomes (S1, S3) are sufficiently affected by the unobserved
confounders U , formalized in the following completeness conditions.

Assumption 5 (Completeness Conditions). For any s2 ∈ S2, a ∈ {0, 1}, x ∈ X ,

1. If E [g(U) | S3, S2 = s2, A = a,X = x,G = O] = 0 holds almost surely, then g(U) = 0 almost
surely.

2. If E [g(U) | S1, S2 = s2, A = a,X = x,G = O] = 0 holds almost surely, then g(U) = 0 almost
surely.

These completeness conditions require that the short-term outcomes (S1, S3) are strongly depen-
dent with the unobserved confounders, and they have sufficient variability relative to the unobserved
confounders U . Under these conditions, (S1, S3) can be viewed as strong proxy variables1 for the
unobserved confounders U . Completeness assumptions have been used extensively in recent liter-
ature on proximal causal inference [Miao et al., 2016, Shi et al., 2020, Miao and Tchetgen, 2018,
Cui et al., 2020, Kallus et al., 2021]. However, these literature require proxy variables that are not
causally affected by the treatment, termed negative controls. In contrast, here both of (S1, S3) can
be affected by the treatment and thus do not directly fit into this previous literature.

While in the main text we simply consider a single set of unobserved confounders U that affect
everything, in Appendix E.2 we further dissect persistent confounders into groups of variables and
show that some unobserved confounders can be ignored and simply excluded from U , relaxing some
of the above assumptions.

4 Identification

In this section, we establish three novel identification strategies for the average long-term treatment
effect in presence of general persistent confounding.

4.1 Identification via Outcome Bridge Function

We first introduce the concept of an outcome bridge function, which will play an important role in
our first identification strategy.

Assumption 6 (Outcome Bridge Function). There exists an outcome bridge function h0 : S3 ×
S2 ×A×X → R defined as follows:

E [Y | S2, A, U,X,G = O] = E [h0(S3, S2, A,X) | S2, A, U,X,G = O] . (7)

According to Equation (7), an outcome bridge function h0 gives a transformation of short-
term outcomes (S3, S2), treatment A, and covariates X, such that the confounding effects of the
unmeasured variables U on this transformation can reproduce those on the long-term outcome Y .
So we can expect outcome bridge functions to be useful in tackling unmeasured confounding.

1Note that we do not require S2 to be strong proxy variables. Instead, we only require S2 to block the path
between S1 and S3 as depicted in Figure 3, so that Assumption 4 is plausible.
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In general nonparametric settings, Assumption 6 holds as a consequence of Assumption 5 condi-
tion 1 and some additional technical conditions. See Appendix C for details. In some special cases
detailed below, we can both directly guarantee Assumption 6 and describe the functional form of
outcome bridge functions.

Example 1 (Discrete Setting). Suppose that S1 = S2 = S3 =
{
s(j) : j = 1, . . . ,Ms

}
and U ={

u(k) : k = 1, . . . ,Mu

}
. For any s2 ∈ S2, a ∈ A, x ∈ X , let E [Y | s2, a,U, x] ∈ RMu denote the vec-

tor whose kth element is E
[
Y | S2 = s2, A = a, U = u(k), X = x,G = O

]
and P (S3 | s2, a,U, x) ∈

RMs×Mu the matrix whose (j, k)th element is P
(
S3 = s(j) | S2 = s2, A = a, U = u(k), X = x,G = O

)
.

The existence of an outcome bridge function in Assumption 6 is equivalent to the existence of a
solution z ∈ RMs to the following linear equation system for any s2 ∈ S2, a ∈ A, x ∈ X :

P (S3 | s2, a,U, x)⊤z = E [Y | s2, a,U, x] (8)

A sufficient condition for the existence of solutions to Equation (8) is that the matrix P (S3 |
s2, a,U, x) has a full column rank for any s2 ∈ S2, a ∈ A, x ∈ X . This full column rank condition
means that S3 are strongly dependent with U and it requires that the number of possible values of
S3 (i.e., Ms) is no smaller than the number of possible values of U (i.e., Mu). In this example, the
full column rank sufficient condition is equivalent to the completeness condition in Assumption 5
condition 1.

Example 2 (Linear Model). Suppose that (Y, S3, S2, S1) are generated from the following linear
structural equation system:

Y = τyA+ α⊤
y S3 + β⊤y X + γ⊤y U + ϵy,

Sj = τjA+ αjSj−1 + βjX + γjU + ϵj , j ∈ {3, 2}
S1 = τ1A+ β1X + γ1U + ϵ1,

where τy, (τj , αy, βy, γy), (αj , βj , γj) are scalars, vectors, and matrices of conformable sizes, re-
spectively, and ϵy, ϵj are independent mean-zero noise terms such that ϵy ⊥ (S,A,U,X) and
ϵj ⊥ (Sj−1, . . . , S1, A, U,X). Assumption 6 holds if there exists a solution ω to the linear equation
γ⊤3 ω = γy, since for any such ω, it can be easily shown that a valid outcome bridge function is

h0(s3, s2, a, x) = θ⊤3 s3 + θ⊤2 s2 + θ1a+ θ⊤0 x,

where θ3 = ω+αy, θ2 = −α⊤
3 ω, θ1 = τy − τ⊤3 ω, θ0 = βy − β⊤3 ω. Therefore, a sufficient condition for

the existence of outcome bridge functions is that γ3 has a full column rank. This full-column-rank
condition again means that S3 is sufficiently informative for the unobserved confounders U .

Note that outcome bridge functions in Equation (7) are defined in terms of unobserved con-
founders, so we cannot directly use this definition to learn outcome bridge functions from observed
data. In the following lemma, we give an alternative characterization of outcome bridge functions,
only in terms of distributions of observed data.

Lemma 1. Under Assumptions 1 to 4, the completeness condition in Assumption 5 condition 2
and Assumption 6, any function h0 that satisfies

E [Y | S2, S1, A,X,G = O] = E [h0(S3, S2, A,X) | S2, S1, A,X,G = O] (9)

is also a valid outcome bridge function in the sense of Equation (7).
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In Lemma 1, we assume the completeness condition in Assumption 5 condition 2, which requires
the short-term outcomes S1 to be informative enough for the unobserved confounders U . Under
this additional assumption, outcome bridge functions can be equivalently characterized by the con-
ditional moment equation in Equation (9). Note that Equation (9) simply replaces the unobserved
confounders U in Equation (7) by the observed short-term outcomes S1. The resulting conditional
moment equation only depends on observed variables.

We finally establish the identification of the average long-term treatment effect in the following
theorem.

Theorem 1. Under the conditions of Lemma 1, the average long-term treatment effect is identifi-
able: for any function h0 satisfying Equation (9), at least one of which exists, we have

τ = E [h0(S3, S2, A,X) | A = 1, G = E]− E [h0(S3, S2, A,X) | A = 0, G = E] . (10)

Theorem 1 states that the average long-term treatment effect can be recovered by marginal-
izing any outcome bridge function (which is defined on the observational data distribution) over
the experimental data distribution. This shows how observational and experimental data can be
combined together to identify the long-term treatment effect.

Remark 1 (Connection to Athey et al. [2020]). The proposed identification strategy in Equa-
tion (10) can be viewed as a generalization of that in Athey et al. [2020]. When there only exist
short-term confounders, Athey et al. [2020] shows that we only need a single group of short-term
outcomes. We can let S1 = S3 = ∅ and S = S2, then h0(S2, A,X) = E [Y | S,A,X,G = O] is the
unique solution to Equation (9), and it can be plugged into Equation (10) to identify the average
long-term treatment effect. This recovers the identification strategy in Theorem 1 of Athey et al.
[2020] when specialized to the case of Assumption 3 (Corollary 1 in Appendix D.1 recovers it in
the general case; see discussions therein). Of course, when persistent confounding is present this
identification fails and instead Theorem 1 provides a more general identification strategy that can
leverage structure in the surrogates to handle persistent confounders.

4.2 Identification via Selection Bridge Function

The second identification strategy involves an alternative function called selection bridge function.

Assumption 7 (Selection Bridge Function). There exists a selection bridge function q0 : S2×S1×
A×X → R defined as follows:

p(S2, U,X | A,G = E)

p(S2, U,X | A,G = O)
= E [q0(S2, S1, A,X) | S2, A, U,X,G = O] . (11)

According to Equation (11), a selection bridge function q0 gives a transformation of short-term
outcomes (S2, S1), treatment A, and covariates X, which can adjust for distributional differences
between the experimental and observational data. In Appendix G.1 Lemma 7, we prove that
under assumption 3, the density ratio in left hand side of Equation (11) is almost surely finite, so
Equation (11) is well-defined.

In general nonparametric models, the existence of a selection bridge function can be ensured by
the completeness condition in Assumption 5 condition 2 and some additional technical conditions.
See Appendix C for details. This means that a selection bridge function exists when the short-term
outcomes S1 are sufficiently informative for the unobserved confounders U . We can also derive
more specialized existence conditions for Examples 1 and 2 (see Appendix B).
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Again, selection bridge functions in Equation (11) are defined in terms of unobserved con-
founders. Below, we derive alternative characterizations in terms of distributions of observed vari-
ables.

Lemma 2. Under assumptions 1 to 4, the completeness condition in Assumption 5 condition 1,
and Assumption 7, any function q0 that satisfies

p(S3, S2, X | A,G = E)

p(S3, S2, X | A,G = O)
= E [q0(S2, S1, A,X) | S3, S2, A,X,G = O] (12)

is also a valid selection bridge function in the sense of Equation (11).

In Lemma 2, we assume the completeness condition in Assumption 5 condition 1, which requires
the short-term outcomes S3 to be informative enough for the unobserved confounders U . Under
this additional assumption, selection bridge functions can be equivalently characterized by the con-
ditional moment equation in Equation (12), which involves only observed variables. Equation (12)
is a direct analogue to Equation (11), replacing U in Equation (11) by S3 in Equation (12). We
can also equivalently express Equation (12) as follows

E
[
I [G = O]

(
P (G = E | A)
P (G = O | A)

q0(S2, S1, A,X) + 1

)
| S2, S1, A,X

]
= 1. (13)

Equation (13) is a more convenient formulation for estimation as it does not involve any conditional
density function.

Theorem 2. Under conditions in Lemma 2, the average long-term treatment effect is identifiable:
for any function q0 that satisfies Equation (12) or Equation (13), at least one of which exists, we
have

τ = E [q0(S2, S1, A,X)Y | A = 1, G = O]− E [q0(S2, S1, A,X)Y | A = 0, G = O] . (14)

Theorem 2 states that the average long-term treatment effect can be also identified by any
selection bridge function. This provides an alternative to the identification strategy based on
outcome bridge functions in Theorem 1.

Remark 2 (Comparison with Proximal Causal Inference). As we discussed in Section 2.3, our
identification strategies are related to identification in the proximal causal inference literature.
Indeed, we also take a proxy-variable perspective, viewing short-term outcomes (S1, S3) as proxy
variables for the unobserved confounders U . Moreover, the characterization for outcome bridge
function h0 given in Equation (9) has an analogue in Miao and Tchetgen [2018].

Nevertheless, our setting is substantially different from the existing proximal causal inference
literature. The short-term outcomes (S1, S3) are both affected by the treatment, so they do not
satisfy the proxy conditions in Miao et al. [2016]. Our identification strategies also feature a novel
use of the experimental data. This is crucial in our setting, whereas proximal causal inference
focuses on observational data only. Notably, our identification strategy in Theorem 2 relies on a
new selection bridge function. This bridge function, as defined in eq. (12), is specialized to our data
combination setting, without direct analogue in the existing proximal causal inference literature
except the concurrent work Ghassami et al. [2022].

Remark 3 (Assumptions 5 to 7 and the Conditioning on S2). In Assumption 5 we assume two
completeness conditions and in Assumptions 6 and 7, we assume the exsitence of outcome and
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selection bridge functions. These conditions roughly require S1, S3 to be strongly dependent with
the unobserved confounders U after accounting for S2, A and X. Since S2 also tend to be dependent
with U , conditioning on S2 may explain away part of the dependence between S1, S3 and U . Thus
Assumptions 5 to 7 may be at risk if S2 include very rich short-term outcomes and capture a
very large amount of variations in U . They are more plausible as S1, S3 include richer informative
short-term outcomes relative to S2.

4.3 Doubly Robust Identification

In Sections 4.1 and 4.2, we present two different identification strategies, based on outcome bridge
functions and selection bridge functions, respectively. We now combine them into a doubly robust
identification strategy.

Theorem 3. Fix functions h : S3 × S2 × A × X → R and q : S2 × S1 × A × X → R. If either
conditions in Theorem 1 hold and h = h0 satisfies eq. (9), or conditions in Theorem 2 hold and
q = q0 satisfies eq. (12) or eq. (13), then the average long-term treatment effect is identified as:

τ =
∑

a∈{0,1}

(−1)1−aE [h(S3, S2, A,X) | A = a,G = E]

+
∑

a∈{0,1}

(−1)1−aE [q(S2, S1, A,X)(Y − h(S3, S2, A,X)) | A = a,G = O] .
(15)

Theorem 3 shows that Equation (15) identifies the average long-term treatment effect when it
uses either a valid outcome bridge function or a valid selection bridge function. But it does not
need both bridge functions to be valid. This is why it is called doubly robust.

5 Estimation and Inference

In this section, we provide three different estimators for the average long-term treat effect, cor-
responding to the three different identification strategies in Section 4 respectively. This involves
combining two samples, so we assume that as n → ∞, nE/nO → λ where 0 < λ < ∞. This is a
common assumption in the data combination literature [e.g., Angrist and Krueger, 1992, Graham
et al., 2016].

In order to estimate the average long-term treatment effect, we need to first estimate the
outcome and/or selection bridge functions. Estimating these bridge functions amounts to solving
the conditional moment equations in Equations (9) and (13) based on a finite sample of data,
which corresponds to an ill-posed inverse problem [Carrasco et al., 2007]. A variety of estimation
strategies can be used for this task, which we review in Remark 4 below. For now, we consider
any generic bridge function estimators, which may be any from those reviewed in Remark 4, and
discuss different ways to use these to construct the long-term treatment effect estimator.

Below, we define three different estimators for the counterfactual mean parameter µ(a), a ∈ A.
They all use the cross-fitting technique when constructing bridge function estimators. This tech-
nique has been widely used to accommodate complex nuisance function estimators while preserving
strong asymptotic guarantees [e.g., Chernozhukov et al., 2019, Zheng and Laan, 2011].

Definition 1 (Cross-fitted Counterfactual Mean Estimator). Fix a ∈ A and an integer K ≥ 2.

1. Randomly split the observational data DO into K (approximately) even folds, denoted as
DO,1, . . . ,DO,K , respectively.
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2. For k = 1, . . . ,K, use all observational data other than the kth fold, i.e., DO,−k := ∪j ̸=kDO,j,
to construct the outcome bridge function estimator based on Equation (9) and/or the selec-
tion bridge function estimator based on Equation (13). Denote them as ĥk(S3, S2, A,X) and
q̂k(S2, S1, A,X), respectively.

3. Use any of the following counterfactual mean estimators:

µ̂OTC(a) =
1

K

K∑
k=1

 1

n
(a)
E

∑
i∈DE

I [Ai = a] ĥk(S3,i, S2,i, Ai, Xi)

 ,
µ̂SEL(a) =

1

K

K∑
k=1

 1

n
(a)
O,k

∑
i∈DO,k

I [Ai = a] q̂k(S2,i, S1,i, Ai, Xi)Yi

 ,
µ̂DR(a) =

1

K

K∑
k=1

 1

n
(a)
E

∑
i∈DE

I [Ai = a] ĥk(S3,i, S2,i, Ai, Xi)


+

1

K

K∑
k=1

 1

n
(a)
O,k

∑
i∈DO,k

I [Ai = a] q̂k(S2,i, S1,i, Ai, Xi)
(
Yi − ĥk(S3,i, S2,i, Ai, Xi)

) ,
where n

(a)
E =

∑
i∈DE

I [Ai = a] and n
(a)
O,k =

∑
i∈DO,k

I [Ai = a] are the numbers of units with
treatment level a in the experimental data DE and the k-th fold of observational data DO,k,
respectively.

Based on the counterfactual mean estimators in Definition 1, we can construct average long-term
treatment effect estimators:

τ̂OTC = µ̂OTC(1)− µ̂OTC(0), τ̂SEL = µ̂SEL(1)− µ̂SEL(0), τ̂DR = µ̂DR(1)− µ̂DR(0).

To analyze the asymptotic properties of these treatment effect estimators, we need to impose
some high level conditions on the estimation errors of the bridge function estimators. Since these es-
timators solve ill-posed conditional moment equations, we quantify their estimation errors in terms
of both weak metrics and the strong metrics, as this is a common practice in the literature [e.g.,
Chen and Pouzo, 2012, Dikkala et al., 2020]. In particular, we define a projection operator T and
its adjoint operator T ⋆ given by [Th](S2, S1, A,X) = E [h(S3, S2, A,X) | S2, S1, A,X,G = O] and
[T ⋆q](S3, S2, A,X) = E [q(S2, S1, A,X) | S3, S2, A,X,G = O]. For a given outcome bridge function
estimator ĥ and a given selection bridge function estimator q̂, we can quantify their estimation
errors relative to h and q in terms of the weak metrics ∥T (ĥ−h)∥L2(P) and ∥T ⋆(q̂− q)∥L2(P) respec-

tively. We can also quantify their estimation errors in terms of the strong metrics ∥ĥ−h∥L2(P) and
∥q̂− q∥L2(P) respectively. The strong-metric errors can be much larger (even infinitely larger) than
the corresponding weak-metric errors due to ill-posedness of the conditional moment equations.

Assumption 8 (Error Rates of Bridge Function Estimators). 1. There exist h̃ ∈ S3×S2×A×
X → R and sequences δh,n → 0 and ρh,n → 0 such that

∥T (ĥk − h̃)∥L2(P) = OP(δh,n), ∥ĥk − h̃∥L2(P) = OP(ρh,n), ∀k ∈ {1, . . . ,K} .

2. There exist q̃ ∈ S2 × S1 ×A×X → R and sequences δq,n → 0 and ρq,n → 0 such that

∥T ⋆(q̂k − q̃)∥L2(P) = OP(δq,n), ∥q̂k − q̃∥L2(P) = OP(ρq,n), ∀k ∈ {1, . . . ,K} .
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Assumption 8 specifies that the outcome bridge function estimator and selection bridge function
estimator converge to some limits h̃ and q̃ respectively, in terms of both weak metrics and strong
metrics. Note that we do not necessarily require these estimators to be consistent, i.e., we allow
h̃ ̸= h0 or q̃ ̸= q0, as we show in the following theorem.

Theorem 4 (Estimation Consistency). 1. If conditions in Theorem 1 and Assumption 8 con-
dition 1 hold, and h̃ = h0, then τ̂OTC consistent.

2. If conditions in Theorem 2 and Assumption 8 condition 2 hold, and q̃ = q0, then τ̂SEL is
consistent.

3. If the conditions in either of the two statements above hold, then τ̂DR is consistent.

Theorem 4 shows that if the outcome bridge function estimator is consistent (i.e., h̃ = h0), then
the corresponding treatment effect estimator τ̂OTC is consistent. Similarly, if the selection bridge
function estimator is consistent (i.e., q̃ = q0), then the corresponding treatment effect estimator
τ̂SEL is also consistent. In contrast, the estimator τ̂DR is more robust, in that it is consistent if
either of the two bridge function estimators is consistent.

Theorem 4 establishes the consistency of treatment effect estimators given only high level condi-
tions on the bridge function estimators, regardless of how they are actually constructed. However,
the actual ways to construct bridge function estimators generally do impact the asymptotic dis-
tributions of treatment effect estimators τ̂OTC and τ̂SEL. So we only focus on the asymptotic
distribution of estimator τ̂DR, which can be derived even under generic high level conditions.

Theorem 5 (Asymptotic Distribution of Doubly Robust Estimator). Suppose that conditions
in both Theorem 4 statement 1 and Theorem 4 statement 2 hold and min {δh,nρq,n, ρh,nδq,n} =
o(n−1/2). Then as n→∞,

√
n(τ̂DR − τ)⇝ N

(
0, σ2

)
,

where

σ2 =
1 + λ

λ
E

[(
A− P (A = 1 | G = E)

P (A = 1 | G = E)
(h0(S3, S2, A,X)− µ(A))

)2

| G = E

]

+ (1 + λ)E

[(
A− P (A = 1 | G = O)

P (A = 1 | G = O)
q0(S2, S1, A,X)(Y − h0(S3, S2, A,X))

)2

| G = O

]
.

Theorem 5 shows that if both bridge function estimators are consistent (i.e., h̃ = h0 and q̃ = q0),
and the product of their convergence rates in terms of one strong-metric error and one weak-metric
error is o(n−1/2), then the doubly robust treatment effect estimator τ̂DR is asymptotically normal
with a closed-form asymptotic variance. Note that the rate condition is weaker than requiring the
product of two strong-metric error rates to be o(n−1/2). We can easily estimate this asymptotic
variance by plugging estimates into all unknowns therein:

σ̂2 =
n

nEK

K∑
k=1

 1

nE

∑
i∈DE

[
Ai − π̂E
π̂E

(
ĥk(S3,i, S2,i, Ai, Xi)− µ̂DR(Ai)

)]2
+

n

nOK

K∑
k=1

 1

nO,k

∑
i∈DO,k

[
Ai − π̂O
π̂O

q̂k(S2,i, S1,i, Ai, Xi)
(
Yi − ĥk(S3,i, S2,i, Ai, Xi)

)]2 , (16)

where π̂E and π̂O are sample frequency estimates for P (A = 1 | G = E) and P (A = 1 | G = O) re-
spectively. Then we can construct confidence intervals based on this estimated asymptotic variance.
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Theorem 6 (Confidence Interval). Under the conditions in Theorem 5, the confidence interval

CI =
[
τ̂DR − Φ−1(1− α/2)σ̂/

√
n, τ̂DR +Φ−1(1− α/2)σ̂/

√
n
]

satisfies that

P (τ ∈ CI)→ 1− α, as n→∞.

In the following theorem, we further show that the asymptotic variance in Theorem 5 actually
attains the local semiparametric efficiency lower bound, provided that the bridge functions uniquely
exist and an additional regularity condition holds.

Theorem 7 (Asymptotic Efficiency). Let P be a distribution instance such that Assumptions 6
and 7 hold with unique bridge functions and the corresponding linear operator T defined above
Assumption 8 is bijective. Then, the efficiency lower bound for the average long-term treatment
effect τ under Assumptions 1 to 4 and 6, locally evaluated at the distribution P, is equal to σ2 given
in Theorem 5.

Theorem 7 implies that under the asserted assumptions, treatment effect estimator τ̂DR is
asymptotically optimal, in the sense that it achieves the smallest asymptotic variance among all
regular and asymptotically linear estimators [Van der Vaart, 2000].

Remark 4 (Bridge Function Estimators). Estimating bridge functions amounts to estimating
roots of the conditional moment equations in Equations (9) and (13). This can be implemented
by a variety of methods. Examples include Generalized Method of Moments (GMM) [e.g., Miao
and Tchetgen, 2018, Cui et al., 2020, Hansen, 1982], sieve methods [e.g., Ai and Chen, 2003,
Newey and Powell, 2003, Hall and Horowitz, 2005], kernel density estimators [e.g., Darolles et al.,
2010, Hall and Horowitz, 2005], Reproducing Kernel Hilbert Space methods [e.g., Singh et al.,
2019, Ghassami et al., 2021b], neural network methods [e.g., Hartford et al., 2017, Bennett et al.,
2019], and more generally, adversarial learning methods [e.g., Bennett and Kallus, 2020, Dikkala
et al., 2020, Kallus et al., 2021]. We can use any of these to estimate the bridge functions. Some
of these also provide theoretical guarantees on the resulting convergence rates (in the sense of
Assumption 8). In particular, the weak-metric error rates are readily available in many of these
works, but the strong-metric error rates typically need additional restrictions on the ill-posedness
of the conditional moment equations [Chen and Pouzo, 2012, Dikkala et al., 2020].

Remark 5 (Non-uniqueness of Bridge Functions). In Theorem 7, we assume that bridge functions
uniquely exist, which is not necessarily true in practice. As we discussed in Sections 4.1 and 4.2,
bridge functions exist if the short-term outcomes S1 and S3 are sufficiently informative for the
unobserved confounders. But when they are more informative than necessary, there may exist
more than one bridge function. For example, in Example 1, when the matrix P (S3 | s2, a,U, x) has
full column rank and S3 has more values than the unobserved confounders U , Equation (8) admits
many solutions z and each of them corresponds to a different outcome bridge function.

The non-uniqueness of bridge functions has important implications for asymptotic properties of
treatment effect estimators. Almost all previous results in proximal causal inference assume unique
bridge functions when studying statistical inference. One exception is the penalized GMM estimator
in Imbens et al. [2021], which leverages penalization to power inference even with non-unique
bridge functions. But their approach only applies to parametric estimation of bridge functions.
Bennett et al. [2022] proposes methods for inference on functionals of solutions to weakly identified
nonparametric conditional moment equations, and consider proximal causal inference with non-
unique bridge functions as a canonical example.
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6 Extensions

In this section, we extend our previous identification results. We first relax Assumptions 2 and 3
in Section 6.1. Then in Section 6.2 we provide an alternative identification strategy via control
functions rather than bridge functions. This approach can identify not only the average long term
treatment effect but also the entire distribution of the counterfactual long term outcomes.

6.1 Relaxing Assumptions 2 and 3

We now extend our identification results by relaxing Assumptions 2 and 3. In particular, we
relax Assumption 3 by allowing the covariate distribution to be different in the experimental and
observational data. This is an important extension because these two types of data are often
collected from different environments, where the covariate distributions are likely to be different.
For example, because observational data are usually easier to collect and have larger scale than
experimental data, the observational covariate distribution may be more representative of the entire
population of interest, while experimental data may only correspond to a selective sub-population.
Therefore, we consider the following assumption to allow for different covariate distributions in two
types of data.

Assumption 9 (External Validity, Modified). Suppose that for any a ∈ {0, 1},

(S(a), U) ⊥ G | X, (17)

and Equation (5) holds almost surely.

Moreover, we relax Assumption 2 by allowing the treatment assignment in the experimental
data to depend on covariates X, instead of being completely at random. This permits us to also
accommodate stratified randomized designs for the experimental data.

Assumption 10 (Experimental Data, Modified). Suppose that for any a ∈ {0, 1},

(Y (a), S(a), U) ⊥ A | X,G = E, (18)

and 0 < P (A = 1 | X,G = E) < 1 almost surely.

Below we extend the doubly robust identification strategy in Theorem 3, which shows that the
long-term average treatment effect is still identifiable under the weaker Assumptions 9 and 10.

Theorem 8. Fix functions h : S3 × S2 × A × X → R, q : S2 × S1 × A × X → R, and denote
h̄E(a, x) = E [h(S3, S2, A,X) | A = a,X = x,G = E]. Suppose Assumptions 1, 4, 9 and 10 hold,
and either of the following two conditions holds:

1. The completeness condition in Assumption 5 condition 2 and Assumption 6 hold, and h = h0
satisfies Equation (9);

2. The completeness condition in Assumption 5 condition 1 and Assumption 7 hold, and q = q0
satisfies Equation (12) or Equation (13).

Then the average long-term treatment effect is identified as:

τ =
∑

a∈{0,1}

(−1)1−a

{
E
[
h̄E(a,X) | G = O

]
+ E

[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

(
h(S3, S2, A,X)− h̄E(A,X)

)
| G = E

]
+ E

[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
q (S2, S1, A,X) (Y − h (S3, S2, A,X)) | G = O

]}
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Theorem 8 shows that even under the weaker Assumptions 9 and 10, outcome and selection
bridge functions can still be used to identify the average long-term treatment effect. This again
has the doubly robust property in that it only requires one of the bridge functions to be cor-
rect rather than both. Compared to Theorem 3, Theorem 8 additionally incorporates the ratio
P (G = O | X) /P (G = E | X) to adjust for the discrepancy in covariate distribution of the two
types of data (Assumption 9). It also uses the propensity score P (A = a | X,G = E) to account
for the dependence of treatment A on covariates X in the experimental data (Assumption 10).

In Appendix D.1, we further show that by setting q = 0, h = h0 or h = 0, q = q0 in Theorem 8,
we can obtain direct analogues of Theorems 1 and 2 that involve only a single bridge function. In
Appendix D.2, we prove that the estimating equation based on the doubly robust identification
strategy in Theorem 8 satisfies the Neyman orthogonality property [Chernozhukov et al., 2019],
and show that the resulting treatment effect estimator has appealing asymptotic properties and is
amenable to inference.

In Appendix E, we present some additional extensions. In Appendix E.1, we extend our iden-
tification strategies to the setting where pre-treatment outcomes are available. In Appendix E.2,
we show that it is possible to relax completeness conditions in Assumption 5 so that short-term
outcomes need only be rich enough to capture only some of the unobserved confounders rather than
all of them.

Remark 6 (Connection to Ghassami et al. [2022]). The doubly robust identification strategy
in Theorem 8 and its close variants based on only a single bridge function (see Corollary 1 in
Appendix D.1) have close analogues in the concurrent and dependent work Ghassami et al. [2022].
Specifically, the proximal data fusion identification strategies in Ghassami et al. [2022] use a set of
short-term outcomesM and an additional set of proxies Z that satisfy Z ⊥ (M,Y ) | A,X,U,G = O.
We note that under our sequential outcome condition in Assumptions 1 and 4, we have S1 ⊥
(S3, Y ) | S2, A,X,U,G = O. The identification strategies in Ghassami et al. [2022], when their Z
andM are replaced by S1 and S3 respectively and S2 is additionally conditioned on everywhere, are
actually equivalent to our identification strategies. Despite the close relations to Ghassami et al.
[2022], our paper uniquely shows that short-term outcomes alone suffice for addressing unmeasured
confounding and enables this by assuming a novel sequential outcome condition. As a result, we
do not need to look for any external proxy, which may be often unavailable in practice. Instead, we
can focus on only short-term outcomes like existing literature [e.g., Athey et al., 2019, 2020, Kallus
and Mao, 2020]. In addition, we also provide many additional extensions that have no analogues
in Ghassami et al. [2022]. See Section 2.2 for a summary.

6.2 A Control Function Approach

In previous parts, we focus on identifying the long-term treatment effect using bridge functions. In
this part, we provide an alternative identification approach based on a control function. Control
functions are special variables constructed from existing variables that can help correct for con-
founding bias by conditioning on them [Wooldridge, 2015]. Control functions are often constructed
from instrumental variables [e.g., Blundell and Powell, 2003, Imbens and Newey, 2009, Florens
et al., 2008], but Nagasawa [2018] recently proposes control functions based on proxy variables
under assumptions similar to those in the proximal causal inference literature (see the review in
Section 2.3). We extend this approach to our setting of long term causal inference. This extension
is not straightforward, noting that the assumptions of proximal causal inference are not exactly
satisfied in our setting (see Remark 2).

Specifically, we will show that the stochastic process V := {p(s3 | S2, S1, A,X,G = O) : s3 ∈ S3}
can be used as a valid control function to identify the long term treatment effect. Here we consider
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identifying the expectation of an arbitrary transformation of the counterfactual long term outcome,
a more general parameter than the average effect parameter considered so far.

Theorem 9. Suppose Assumptions 1, 4, 9 and 10 and the completeness condition in Assumption 5
condition 1 hold. Moreover, assume for a ∈ {0, 1}, the support of V given S2, A = a,X,G = O is
identical to the support of V given S2, X,G = O. Then for any function r : Y 7→ R and a ∈ {0, 1},

E [r(Y (a)) | G = O] = E [E [E [r(Y ) | V, S2, A = a,X,G = O] | A = a,X,G = E] | G = O] . (19)

Besides the running Assumptions 1, 4, 9 and 10, Theorem 9 also imposes the completeness con-
dition in Assumption 5 condition 1 and a common support condition. This completeness condition
requires S3 to be sufficiently informative for the unobserved confounders U , after taking into ac-
count other relevant variables. The common support condition enables us to vary A while holding
constant the control function V after conditioning on S2, X,G = O. It is equivalent to the overlap
condition that 0 < P (A = 1 | V, S2, X,G = O) < 1 almost surely. This condition is possible only
when S1 can induce sufficient extra variations in V, or alternatively, when S1 has a large support
and it is sufficiently informative for U [Nagasawa, 2018]. Common support conditions like this are
prevalent in the control function literature. See Nagasawa [2018], Imbens and Newey [2009] for
more discussions and justifications.

We note that the identification formula in Equation (19) can be used to identify not only
the average effect, but also the entire distribution of the counterfactual long term outcome Y (a).
This can be achieved by applying Equation (19) to the indicator function r(·) = I [· ≤ y] for all
y ∈ Y. Actually, under the condition 2 in Theorem 8, we can also use a selection bridge function
to identify the entire distribution of Y (a) (see Corollary 3 in Appendix D.1). The condition 2
in Theorem 8 (i.e., the existence of a selection bridge function and the completeness condition in
Assumption 5 condition 2) has similar qualitative implications as the completeness condition and
common support condition in Theorem 9: they require both S1 and S3 to be sufficiently strong
proxies for the unobserved confounders U . However, these two set of conditions are in general
not directly comparable. See Nagasawa [2018] for more discussions on the connections between
conditions in the control function approach and conditions in the bridge function approach.

Finally, we remark that estimating the target parameter based on the identification formula in
Theorem 9 may be challenging. On the one hand, the common support condition may fail in prac-
tical applications [Chernozhukov et al., 2020]. We may follow Nagasawa [2018], Newey and Stouli
[2021] and impose additional (semi)-parametric restrictions on the function E [r(Y ) | V, S2, A = a,X,G = O].
These assumptions can allow for model extrapolation across different values of V, thereby relaxing
the common support condition. Another possibility is to derive partial identification bounds when
the common support function is violated. On the other hand, the control function approach re-
quires controlling for an infinitely dimensional stochastic process V, which cannot be implemented
exactly in practice. Nagasawa [2018] proposes a dimension reduction technique for the estimation
of causal effects in the proximal causal inference setting. Similar techniques may be also useful
in our setting. We leave the development of practical estimation methods based on the control
function for the future study.

7 Numerical Studies

7.1 Real data analysis

In this section, we illustrate the performance of our proposed estimators using data for the Greater
Avenues to Independence (GAIN) job training program in California. GAIN is a job assistance
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program from the late 1980s designed to help low-income population. To evaluate its real impacts
on employment, MDRC conducted a randomized experiment in 6 California counties. We use the
dataset analyzed in Athey et al. [2019] and focus on two counties: San Diego and Riverside. For
each experiment participant, the dataset records a binary treatment variable indicating enrollment
in the GAIN program, quarterly job employment information after treatment assignment, and other
covariate information (e.g., age, education, marriage). See Hotz et al. [2006], Athey et al. [2019]
for more information about the GAIN program.

In our numerical studies, we consider the San Diego data as our experimental dataset DE ,
and construct an observational dataset DO based on the Riverside data via a biased subsampling
described below. Then we apply our proposed estimators τ̂OTC, τ̂SEL, and τ̂DR to estimate the
average treatment effect of the GAIN program on the long-term employment. Since the original
data are from randomized experiments, we consider the average treatment effect thereof as the
“ground truth” and use it to evaluate the errors of different estimators.

7.1.1 Data Preparation

For the experimental dataset, we directly use data from San Diego, which include n
(1)
E = 6978

people in the treatment group and n
(0)
E = 1154 people in the control group. For the observational

dataset, we subsample from the Riverside data, which originally include N1 = 4405 people in the
treatment group and N0 = 1040 people in the control group.

We randomly subsample units from the Riverside data according to a sampling probability
function π(A,U) ∈ (0, 1), where A ∈ {0, 1} is the treatment assignment and U ∈ {0, 1, 2, 3} is the
highest education level (“0” means below 9-th grade, “1” means 9-th to 11-th grade, “2” means
12-th grade, and “3” means above 12-th grade). This creates dependence between the treatment
assignment and the education level for the units subsampled into DO. We choose education because
it is quite likely to have persistent effects on participants’ potential employment in all quarters
following the treatment. Then we drop the education level data from DO (and also DE). As a
result, the education level becomes a plausible persistent unmeasured confounder in DO.

To quantify the strength of unmeasured confounding in DO, we index the sampling probability
function π(A,U) by a positive parameter η. We set the sampling probability for control units as
π(0, U) = max{1−ηU/3, 0.2} and the sampling probability for treated units as π(1, U) that satisfies
the following equation:

N0

N0 +N1
π(0, U) +

N1

N0 +N1
π(1, U) =

N1

N1 +N0
+

N0

N1 +N0
max{1− η, 0.2}.

It is easy to show that as η grows, the discrepancy between π(0, U) and π(1, U) also grows. This
implies stronger dependence between U and A in the observational dataset DO, thus stronger
unmeasured confounding. In Appendix F Proposition 3, we prove that with this choice of π(1, U),
the subsampling procedure does not shift the distribution of education level U , so that it does
not violate Assumption 3. Moreover, the subsampling procedure does not influence Assumptions 1
and 2 since the sampling probability function only depends on A,U .

In our numerical studies, we consider the short-term otucomes (S1, S2, S3) as the employment
status in the first two quarters, in the third and fourth quarters, and in the fifth and sixth quarters
after the treatment respectively. We consider the long-term outcome Y as the 20-th quarter em-
ployment. These are all binary variables indicating whether the participants are employed in the
corresponding quarters after the treatment assignments.
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τ̂OTC τ̂SEL τ̂DR Athey et al. Naive

η 0 .33 .67 1 0 .33 .67 1 0 .33 .67 1 NR CV

0
MAE 67 89 84 82 81 81 80 80 71 95 90 88 11 17 0.053
Med 67 89 84 82 81 81 80 80 71 95 90 88 11 17 0.053

0.2
MAE 18 84 80 78 79 79 79 79 24 89 86 85 19 15 0.059
Med 61 84 80 78 79 79 79 79 65 90 87 85 18 15 0.059

0.4
MAE 17 79 75 74 76 76 76 76 23 84 82 80 25 13 0.067
Med 62 79 76 74 77 76 76 76 65 85 83 82 25 13 0.067

0.6
MAE 10 73 70 69 72 72 72 72 17 79 77 76 31 11 0.076
Med 60 74 71 69 73 73 72 72 63 80 78 77 31 10 0.076

0.8
MAE -25 66 64 62 67 67 67 67 -11 72 71 70 33 8 0.088
Med 57 66 64 62 68 67 67 67 59 73 72 71 32 8 0.088

1
MAE 24 65 63 62 68 68 67 67 32 72 71 70 35 6 0.095
Med 57 65 63 62 69 68 68 68 60 73 72 71 36 6 0.095

1.2
MAE -267 64 62 61 68 68 68 67 -323 72 70 70 37 5 0.104
Med 56 65 62 61 70 69 69 68 59 74 72 71 38 5 0.104

1.4
MAE -13 62 59 58 69 68 67 67 -12 71 70 69 38 4 0.115
Med 51 63 60 58 72 71 71 70 53 75 74 73 38 4 0.115

1.6
MAE 5 61 58 56 68 68 67 66 10 71 70 68 40 4 0.124
Med 49 61 58 56 71 71 70 68 52 74 73 72 40 3 0.124

Table 1: Percent improvement in error over the naive unadjusted difference-in-mean estimator for
different estimators: our proposed estimators τ̂OTC, τ̂SEL and τ̂DR, the estimator proposed in Athey
et al. [2020]. Larger percentage decrease means better performance. For reference, the last column
shows the error of the naive unadjusted estimator. For our estimators, we fit bridge functions either

using no regularization (the “0” column) or ridge regularization with λ = 0.33/n
(a)
O , 0.67/n

(a)
O and

1/n
(a)
O (the “.33”, “.67” and “1” columns) respectively. For Athey et al. [2020], we considered

using no regularization (“NR”) and using ridge regularization where the regularization parameter
is selected by cross validation (“CV”).

7.1.2 Results

Table 1 reports the performance of different estimators over 1000 replications of the data sub-
sampling. Each replication results in a different observational dataset DO with different number

of treated units n
(1)
O < N1 and different number of control units n

(0)
O < N0. For evaluation we

consider two criterions over the 1000 replications: Mean Absolute Error (MAE) and Median of
Abolute Errors (MedAE).

In Table 1, we compare the performance of our proposed estimators τ̂OTC, τ̂SEL and τ̂DR in
Section 5 with two benchmarks: the naive difference-in-mean estimator that uses only the observa-
tional dataset and the imputation estimator proposed in Section 4.1 of Athey et al. [2020], which
uses both datasets and information of all short-term outcomes S = (S1, S2, S3). The naive esti-
mator completely ignores confounding, and the estimator in Athey et al. [2020] can only account
for short-term confounding but not persistent confounding. To evaluate the performance of our
estimators and Athey et al. [2020], we consider the percentage decrease in either of our error criteria
relative to the naive difference-in-mean estimator. A positive value corresponds to improvement
over the naive estimator, and a larger value indicates better performance. A negative value means
worse error than the naive estimator.
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In our estimators and the imputation estimator in Athey et al. [2020], we need to first esti-
mate some nuisance functions. We specify the outcome bridge function in our estimators and the
imputation function in Athey et al. [2020] to be linear functions, and specify the selection bridge
function in our estimators to be of the form q(s2, s1, a, x) = exp(β⊤2,as2+β

⊤
1,as1+β

⊤
0,ax+ γa). Since

these are all simple parametric functions, we do not need the cross-fitting technique described in
Section 5, but instead use the same data for nuisance estimation and the final plug-in estimation.
To estimate the bridge functions, we employ the generalized method of moment (GMM) approach
in Cui et al. [2020]. We consider a standard GMM apporach and the approach with additional
ridge regularization, i.e., regularizing the L2 norms of bridge function coefficients in the GMM ob-
jectives, as suggested by Imbens et al. [2021]. When we estimate the bridge function corresponding

to the treatment level a ∈ {0, 1}, we set the regularization tuning parameter as λ = λ0(n
(a)
O )−1 for

λ0 ∈ {0, 0.33, 0.67, 1} (note that here λ0 = 0 corresponds to no regularization). For the imputation
function of Athey et al. [2020], we implement it using either ordinary least squares or cross-validated
ridge regression, for which we use the default options in the R package glmnet [Simon et al., 2011].

From Table 1, we observe that with λ0 ̸= 0, the performance of our proposed estimators
τ̂OTC, τ̂SEL, τ̂DR is stable. They consistently outperform the benchmarks, in terms of both criteria.
In particular, the doubly robust estimator τ̂DR performs the best, reducing the estimation errors
of benchmark methods by large margins. Notably, although the benchmark estimator proposed by
Athey et al. [2020] improves upon the naive estimator, it is always outperformed by our proposed
estimators. This may be due to the fact that the estimator in Athey et al. [2020] cannot handle
persistent confounding. We also observe that as the unmeasured confounding becomes stronger
(i.e., as η grows), all estimators have higher estimation errors, especially the naive estimator.

We observe that the MAE of our estimators when not using regularization is sometimes worse
than the estimator of Athey et al. [2020] and even the naive estimator. This is because unregularized
estimators can be unstable and MAE is sensitive to outlier estimates. Indeed, estimating bridge
functions requires solving inverse problems defined by conditional moment equations, which can
be intrinsically difficult. This problem is common in proximal causal inference, and regularization
has been shown to be sometimes key for valid inference [Imbens et al., 2021]. Nevertheless, the
MedAE, which is robust to outliers, for our estimators is still lower than the benchmarks. This
shows that our proposed estimators, regularized or not, all effectively address the confounding bias.
In the supplementary material Appendix F, we heuristically probe the plausibility of Assumptions 6
and 7 according to the characterization of bridge functions in a discrete setting (see example 1).
Moreover, we also report the performance of different estimators by varying the number of quarters
used for surrogate construction. Our result shows that our approach is consistently more accurate
than the approach in Athey et al. [2020].

7.2 A simulation study

In Section 7.1, we focus on parametric estimation of bridge functions. In this part, we use a
simulation study to further demonstrate the performance of our approach when bridge functions
are nonlinear and estimated by more flexible neural network classes.

Specifically, for both the experimental and observational data, we first generate random vectors
X̃ and U from the multivariate normal distribution with mean zero and covariance matrix 0.5I,
where I is an identity matrix with suitable size. We fix the dimension of U as 5 and vary the
dimension of X̃ over {5, 10, 15, 20}. We further generate Y (a) ∈ R, S̃1(a) ∈ R5, S̃2(a) ∈ R, S̃3(a) ∈
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R5 according to the following process:

Y (a) = τya+ α⊤
y S̃3(a) + β⊤y X̃ + γ⊤y U + ϵy,

S̃j(a) = τja+ αjS̃j−1(a) + βjX̃ + γjU + ϵj , j ∈ {3, 2}
S̃1(a) = τ1a+ β1X̃ + γ1U + ϵ1,

where τy, (τj , αy, βy, γy), (αj , βj , γj) are scalers, vectors, and matrices of conformable sizes, and
ϵy, ϵj are independent mean-zero Gaussian terms with variance 0.5. We generate the entries in
τy, (τj , αy, βy, γy), (αj , βj , γj) by first drawing numbers from the uniform distribution over the [0, 1]
interval and then rescaling them so that the ℓ2-norms of the vectors (τj , αy, βy, γy) and the columns
of (αj , βj , γj) are all equal to 0.5. Moreover, we draw the treatment indicator A according to
P(A = 1 | X̃, U,G = E) = 1

2 and P(A = 1 | X̃, U,G = O) = (1 + exp(κ⊤1 X̃ + κ⊤2 U))−1, where the
coefficients κ1 and κ2 are similarly generated by sampling and rescaling. According to Example 2
and Appendix B.2, the outcome and selection bridge functions exist under certain rank conditions.
Moreover, the outcome bridge function is linear in S̃3, S̃2, X̃, A and the selection bridge function is
an exponential transformation of a linear function of S̃2, S̃1, X̃, A. To introduce nonlinear bridge
functions, we apply a nonlinear transformation g(·) = sign(·) |·|q for q ∈ {1, 1.5, 2} to each element of
X̃, S̃1, S̃2, S̃3, leading to X,S1, S2, S3 respectively. This is an invertible transformation that ensures
a one-to-one correspondence between the original variables and transformed variables. With these
transformations, the bridge functions with respect to the transformed variables X,S1, S2, S3 are
linear when q = 1 and nonlinear when q = 1.5 or 2.

We repeat generating data according to the process above for 200 times. In each replicate, we
draw new values for all the model parameters and generate observational data and experimental
data accordingly with equal sizes nO = nE = 2000. We apply our proposed doubly robust estima-
tor and associated confidence intervals to the datasets. We estimate the bridge functions in two
ways. One way is to use the minimax learning estimators in Kallus et al. [2021], Dikkala et al.
[2020]. Specifically, a minimax bridge function estimator is obtained as the solution to a minimax
optimization problem derived from the corresponding conditional moment equation. In our study,
we follow Kallus et al. [2021] and specify the outer minimization function class (i.e., the class used
to model the bridge function) as a neural network class and the inner maximization function class
(i.e., the class used to guarantee the equivalence between the minimax optimization formulation
and the conditional moment equation formulation) as a Reproducing Kernel Hilbert Space (RKHS).
For implementation details, we refer the readers to the supplementary material. The other way is
to use parametric estimators for the bridge functions, where the specifications are identical to those
in Section 7.1. These model specifications are correct when q = 1 but wrong when q ∈ {1.5, 2}. In
both approaches, we also use a ridge regularization with λ = 1/n

(a)
O , i.e., same as the “1” column

in Table 1.
Table 2 reports the performance of our estimator and confidence intervals based on two kinds

of bridge estimators, over the 200 replicates. When the covariate dimension is relatively low (i.e.,
dim(X) = 5, 10 or 15), the empirical coverage of the minimax based approach is close to the 95%
nominal level in most of the specifications. For the higher dimensional regime dim(X) = 20, the
empirical coverage is slightly worse, which could be due to the curse of dimensionality, especially
for the inner maximization over RKHS.

When q = 1, the average bias of the parametric model based approach is consistently smaller
than the minimax based approach. This is expected as the parametric model is correctly specified
in this case. In contrast, in the nonlinear settings with q = 1.5 and 2, the parametric models are
misspecified, so the RMSE and the average bias of the parametric based approach are overall worse
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dim(X) = 5 dim(X) = 10 dim(X) = 15 dim(X) = 20

q MinMax Param. MinMax Param. MinMax Param. MinMax Param.

1

CP 90.0% 94.5% 96.0% 95.5% 94.0% 95.5% 90.5% 95.0%
CI Len. 0.541 0.576 0.541 0.578 0.548 0.579 0.546 0.579
RMSE 0.157 0.151 0.135 0.139 0.146 0.147 0.155 0.154
Bias 0.058 0.017 0.033 0.015 0.036 0.002 0.054 0.001

1.5

CP 96.5% 97.5% 95.5% 97.0% 95.0% 97.0% 92.5% 97.0%
CI Len. 0.619 0.823 0.576 0.828 0.578 0.819 0.574 0.823
RMSE 0.159 0.184 0.143 0.199 0.160 0.202 0.157 0.197
Bias 0.033 0.031 0.036 0.075 0.034 0.052 0.020 0.056

2

CP 95.5% 96.0% 94.0% 97.0% 93.0% 97.5% 93.0% 98.0%
CI Len. 0.698 2.229 0.611 2.023 0.612 1.842 0.595 2.028
RMSE 0.187 0.698 0.157 0.581 0.192 0.521 0.165 0.574
Bias 0.073 0.028 0.049 0.085 0.073 0.096 0.032 0.113

Table 2: The empirical coverage probability (CP) of the 95%-confidence interval and its average
length (CI len.), and the root mean squared error (RMSE) and the average absolute bias (Bias) of
the doubly robust estimators, with bridge functions estimated by the minimax approach (MinMax)
and parametric approach (Param.) respectively. The covariate dimension varies from 5 to 20 and
the degree of nonlinearity varies from q = 1 to 2. Here q = 1 corresponds to linear (or exponential
linear) bridge functions.

than the minimax based approach, especially for the more nonlinear scenario q = 2. This shows
the benefit of using flexible function classes to model complex bridge functions.

Interestingly, when q = 1.5, 2, the confidence intervals based on the parametric bridge function
estimators do not under-cover the truth, even though the corresponding point estimators have
larger bias and RMSE. Actually, they tend to over-cover the truth in many specifications. This
is perhaps due to the fact that the asymptotic variance tends to be over-estimated, leading to
excessively conservative confidence interval lengths. As shown in Table 2, the average confidence
interval length produced by the parametric based approach is much larger than the minimax based
approach; sometimes, it can even be 4 times larger. Consequently, even with higher average bias,
the parametric based approach is still able to get high empirical coverage.

8 Conclusions

In this paper, we consider combining experimental and observational data for long-term causal
inference. We are particularly interested in the challenge of persistent confounding, i.e., the presence
of unobserved confounders that affect both the short-term and long-term outcomes. To overcome
this challenge, we leverage the sequential structure of multiple short-term outcomes and use part
of them as proxy variables for the unobserved confounders. We propose three novel identification
strategies for the average long-term treatment effect. Based on each of them, we design flexible
treatment effect estimators and inference methods, for which we provide asymptotic guarantees.
Our results show that the long-term treatment effect can be identified and estimated under much
more general conditions than before.

Beyond these specific results, our work more broadly reveals an interesting role for the structure
of short-term outcomes in long-term causal inference. To the best of our knowledge, the structure of
repeated outcome measurements is largely unexplored in the long-term causal inference literature.
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We hope that our work will inspire other researchers to study other plausible structures for short-
term outcomes and benefits these can have for long-term causal inference.
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Philippe Vert, Julie Josse, and Shu Yang. Causal inference methods for combining randomized
trials and observational studies: a review. arXiv preprint arXiv:2011.08047, 2020.

Yifan Cui, Hongming Pu, Xu Shi, Wang Miao, and Eric Tchetgen Tchetgen. Semiparametric
proximal causal inference. arXiv preprint arXiv:2011.08411, 2020.

Serge Darolles, Yanqin Fan, Jean-Pierre Florens, and Eric Renault. Nonparametric instrumental
regression. Econometrica, 79(5):1541–1565, 2010.

Ben Deaner. Proxy controls and panel data. arXiv preprint arXiv:1810.00283, 2021.

Nishanth Dikkala, Greg Lewis, Lester Mackey, and Vasilis Syrgkanis. Minimax estimation of condi-
tional moment models. In Advances in Neural Information Processing Systems, volume 33, pages
12248–12262, 2020.

Oliver Dukes, Ilya Shpitser, and Eric J Tchetgen Tchetgen. Proximal mediation analysis. arXiv
preprint arXiv:2109.11904, 2021.

Jean-Pierre Florens, James J Heckman, Costas Meghir, and Edward Vytlacil. Identification of
treatment effects using control functions in models with continuous, endogenous treatment and
heterogeneous effects. Econometrica, 76(5):1191–1206, 2008.

Constantine E Frangakis and Donald B Rubin. Principal stratification in causal inference. Biomet-
rics, 58(1):21–29, 2002.

AmirEmad Ghassami, Ilya Shpitser, and Eric Tchetgen Tchetgen. Proximal causal inference with
hidden mediators: Front-door and related mediation problems. arXiv preprint arXiv:2111.02927,
2021a.

25



AmirEmad Ghassami, Andrew Ying, Ilya Shpitser, and Eric Tchetgen Tchetgen. Minimax kernel
machine learning for a class of doubly robust functionals. 2021b.

AmirEmad Ghassami, Alan Yang, David Richardson, Ilya Shpitser, and Eric Tchetgen Tchetgen.
Combining experimental and observational data for identification and estimation of long-term
causal effects. 2022.

Bryan S Graham, Cristine Campos de Xavier Pinto, and Daniel Egel. Efficient estimation of data
combination models by the method of auxiliary-to-study tilting (ast). Journal of Business &
Economic Statistics, 34(2):288–301, 2016.

Somit Gupta, Ronny Kohavi, Diane Tang, Ya Xu, Reid Andersen, Eytan Bakshy, Niall Cardin,
Sumita Chandran, Nanyu Chen, Dominic Coey, et al. Top challenges from the first practical
online controlled experiments summit. ACM SIGKDD Explorations Newsletter, 21(1):20–35,
2019.

Peter Hall and Joel L. Horowitz. Nonparametric methods for inference in the presence
of instrumental variables. The Annals of Statistics, 33(6):2904 – 2929, 2005. doi:
10.1214/009053605000000714. URL https://doi.org/10.1214/009053605000000714.

Lars Peter Hansen. Large sample properties of generalized method of moments estimators. Econo-
metrica: Journal of the Econometric Society, pages 1029–1054, 1982.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach
for counterfactual prediction. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pages 1414–1423, 2017.

Henning Hohnhold, Deirdre O’Brien, and Diane Tang. Focusing on the long-term: It’s good for users
and business. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1849–1858, 2015.

V Joseph Hotz, Guido W Imbens, and Jacob A Klerman. Evaluating the differential effects of
alternative welfare-to-work training components: A reanalysis of the california gain program.
Journal of Labor Economics, 24(3):521–566, 2006.

Guido Imbens and Susan Athey. Identification and inference in nonlinear difference-in-difference
models. Econometrica, 74:431–497, 02 2006. doi: 10.2139/ssrn.311920.

Guido Imbens, Nathan Kallus, and Xiaojie Mao. Controlling for unmeasured confounding in panel
data using minimal bridge functions: From two-way fixed effects to factor models. arXiv preprint
arXiv:2108.03849, 2021.

Guido W Imbens and Whitney K Newey. Identification and estimation of triangular simultaneous
equations models without additivity. Econometrica, 77(5):1481–1512, 2009.

Marshall M Joffe and Tom Greene. Related causal frameworks for surrogate outcomes. Biometrics,
65(2):530–538, 2009.

Nathan Kallus and Xiaojie Mao. On the role of surrogates in the efficient estimation of treatment
effects with limited outcome data. arXiv preprint arXiv:2003.12408, 2020.

Nathan Kallus, Aahlad Manas Puli, and Uri Shalit. Removing hidden confounding by experimental
grounding. Advances in neural information processing systems, 31, 2018.

26



Nathan Kallus, Xiaojie Mao, and Masatoshi Uehara. Causal inference under unmeasured confound-
ing with negative controls: A minimax learning approach, 2021.

Richard Kay. A markov model for analysing cancer markers and disease states in survival studies.
Biometrics, pages 855–865, 1986.

Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya Xu. Trustworthy
online controlled experiments: Five puzzling outcomes explained. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 786–
794, 2012.

Rainer Kress, V Maz’ya, and V Kozlov. Linear integral equations, volume 82. Springer, 1989.

Yiyuan Liu, Minghui Wang, Andrew D Morris, Alex SF Doney, Graham P Leese, Ewan R Pear-
son, and Colin NA Palmer. Glycemic exposure and blood pressure influencing progression and
remission of diabetic retinopathy: a longitudinal cohort study in godarts. Diabetes Care, 36(12):
3979–3984, 2013.

Guillermo Marshall and Richard H Jones. Multi-state models and diabetic retinopathy. Statistics
in medicine, 14(18):1975–1983, 1995.

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt Kusner, Arthur
Gretton, and Krikamol Muandet. Proximal causal learning with kernels: Two-stage estimation
and moment restriction. In International Conference on Machine Learning, pages 7512–7523.
PMLR, 2021.

Wang Miao and Eric Tchetgen Tchetgen. A confounding bridge approach for double negative
control inference on causal effects (supplement and sample codes are included). arXiv preprint
arXiv:1808.04945, 2018.

Wang Miao, Zhi Geng, and Eric Tchetgen. Identifying causal effects with proxy variables of an
unmeasured confounder. Biometrika, 105, 09 2016. doi: 10.1093/biomet/asy038.

Sandeep Mohapatra, Scott Rozelle, and Rachael Goodhue. The rise of self-employment in rural
china: development or distress? World Development, 35(1):163–181, 2007.

Kenichi Nagasawa. Treatment effect estimation with noisy conditioning variables. arXiv preprint
arXiv:1811.00667, 2018.

Whitney Newey and Sami Stouli. Control variables, discrete instruments, and identification of
structural functions. Journal of Econometrics, 222(1):73–88, 2021.

Whitney K. Newey and James L. Powell. Instrumental variable estimation of nonparametric models.
Econometrica, 71(5):1565–1578, 2003.

James M Poterba and Lawrence H Summers. Reporting errors and labor market dynamics. Econo-
metrica: Journal of the Econometric Society, pages 1319–1338, 1986.

Ross L Prentice. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics
in medicine, 8(4):431–440, 1989.

Brenda L Price, Peter B Gilbert, and Mark J van der Laan. Estimation of the optimal surrogate
based on a randomized trial. Biometrics, 74(4):1271–1281, 2018.

27



Zhengling Qi, Rui Miao, and Xiaoke Zhang. Proximal learning for individualized treatment regimes
under unmeasured confounding. arXiv preprint arXiv:2105.01187, 2021.

Thomas S Richardson and James M Robins. Single world intervention graphs (swigs): A unification
of the counterfactual and graphical approaches to causality. Center for the Statistics and the
Social Sciences, University of Washington Series. Working Paper, 128(30):2013, 2013.

Evan Rosenman, Guillaume Basse, Art Owen, and Michael Baiocchi. Combining observational and
experimental datasets using shrinkage estimators. arXiv preprint arXiv:2002.06708, 2020.

Evan TR Rosenman, Art B Owen, Mike Baiocchi, and Hailey R Banack. Propensity score methods
for merging observational and experimental datasets. Statistics in Medicine, 41(1):65–86, 2022.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Xu Shi, Wang Miao, Jennifer C. Nelson, and Eric J. Tchetgen Tchetgen. Multiply robust causal in-
ference with double-negative control adjustment for categorical unmeasured confounding. Journal
of The Royal Statistical Society Series B-statistical Methodology, 82(2):521–540, 2020.

Xu Shi, Wang Miao, Mengtong Hu, and Eric Tchetgen Tchetgen. Theory for identification
and inference with synthetic controls: A proximal causal inference framework. arXiv preprint
arXiv:2108.13935, 2021.

Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for cox’s
proportional hazards model via coordinate descent. Journal of Statistical Software, 39(5):1–13,
2011. URL https://www.jstatsoft.org/v39/i05/.

Rahul Singh. Kernel methods for unobserved confounding: Negative controls, proxies, and instru-
ments. arXiv preprint arXiv:2012.10315, 2020.

Rahul Singh. A finite sample theorem for longitudinal causal inference with machine learning: Long
term, dynamic, and mediated effects. arXiv preprint arXiv:2112.14249, 2021.

Rahul Singh. Generalized kernel ridge regression for long term causal inference: Treatment effects,
dose responses, and counterfactual distributions. arXiv preprint arXiv:2201.05139, 2022.

Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. In
Advances in Neural Information Processing Systems, volume 32, 2019.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Eric J Tchetgen Tchetgen, Andrew Ying, Yifan Cui, Xu Shi, and Wang Miao. An introduction to
proximal causal learning. arXiv e-prints, pages arXiv–2009, 2020.

Guy Tennenholtz, Uri Shalit, and Shie Mannor. Off-policy evaluation in partially observable en-
vironments. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
10276–10283, 2020.

Anastasios Tsiatis. Semiparametric theory and missing data. Springer Science & Business Media,
2007.

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

28



Tyler J VanderWeele. Surrogate measures and consistent surrogates. Biometrics, 69(3):561–565,
2013.

Xuan Wang, Layla Parast, Lu Tian, and Tianxi Cai. Model-free approach to quantifying the
proportion of treatment effect explained by a surrogate marker. Biometrika, 107(1):107–122,
2020.

Christopher J Weir and Rosalind J Walley. Statistical evaluation of biomarkers as surrogate end-
points: a literature review. Statistics in medicine, 25(2):183–203, 2006.

Jeffrey M Wooldridge. Control function methods in applied econometrics. Journal of Human
Resources, 50(2):420–445, 2015.

Liyuan Xu, Heishiro Kanagawa, and Arthur Gretton. Deep proxy causal learning and its application
to confounded bandit policy evaluation. Advances in Neural Information Processing Systems, 34,
2021.

Jeremy Yang, Dean Eckles, Paramveer Dhillon, and Sinan Aral. Targeting for long-term outcomes.
arXiv preprint arXiv:2010.15835, 2020a.

Shu Yang and Peng Ding. Combining multiple observational data sources to estimate causal effects.
Journal of the American Statistical Association, 2019.

Shu Yang, Donglin Zeng, and Xiaofei Wang. Elastic integrative analysis of randomized trial and
real-world data for treatment heterogeneity estimation. arXiv preprint arXiv:2005.10579, 2020b.

Shu Yang, Donglin Zeng, and Xiaofei Wang. Improved inference for heterogeneous treatment effects
using real-world data subject to hidden confounding. arXiv preprint arXiv:2007.12922, 2020c.

Andrew Ying, Wang Miao, Xu Shi, and Eric J Tchetgen Tchetgen. Proximal causal inference for
complex longitudinal studies. arXiv preprint arXiv:2109.07030, 2021.

Wenjing Zheng and Mark J Laan. Cross-validated targeted minimum-loss-based estimation. In
Targeted Learning, pages 459–474. Springer, 2011.

29



A Comparison to Other Identifying Conditions

To identify the average long-term treatment effect using data combination, restrictions must be
imposed on unobserved confounders. In this paper, we crucially leverage an assumed sequential
structure in the short-term outcomes and an assumption that these are sufficiently strong proxies
(our Assumptions 4 and 5). In this section, we compare to two other sets of assumptions that, in
addition to Assumptions 1 to 3, minimally ensure identification, and we discuss their relationship to
persistent confounding. Each of the following provide an alternative setting that is just identified,
meaning dropping any one assumption breaks identification. Indeed, in our paper we needed
Assumptions 4 and 5 for identification.

A.1 Comparison to Athey et al. [2020]

Athey et al. [2020] assume latent unconfoundedness: Y (a) ⊥ A | S(a), X,G = O. The assumption,
which makes no explicit reference to presence or absence of persistent confounding, states that,
were it observed, controlling for (S(a), X) would be sufficient. Along with Assumptions 1 to 3 (or,
Assumption 9), they show this assumption ensures identification.

There are many ways to potentially satisfy this abstract assumption. One possibility is if
S(a) = fa(U) is an invertible transformation of U . Such a production-function approach calls to
mind, for example, assumption 3.2 of Imbens and Athey [2006]. This, however, precludes lossyness
or noise in the relationship between short-term outcomes and confounders. Alternatively, we can
consider restrictions encoded solely by causal diagrams that would ensure latent unconfoundedness
holds. One such diagram is shown in Figure 4a: here the unobserved confounders are only short-
term confounders (Us) in they that can only affect the treatment and short-term outcomes, but not
the long-term outcome. Another diagram is shown in Figure 4b: here the unobserved confounders
are only outcome confounders (Uo) in that they simultaneously affect the short-term and long-term
outcomes, but not the treatment.

Latent unconfoundedness generally may not hold in a diagram where confounders are persistent
(Figure 1), and in fact it does not whenever a distribution is “well-represented” by such a diagram.
In Figure 5a, we duplicate the single world intervention graph in Figure 2a for the observational
data. This summarizes the statistical independences among the potential outcomes and other
variables in the observational data. In this graph, the path A ← U → Y (a) is not blocked by
the nodes S(a) and X, so A and Y (a) are not d-separated by S(a) and X. This means that the
latent unconfoundedness assumption in Athey et al. [2020] is violated when the distribution of the
random variables (X,U,A, S(a), Y (a)) is faithful to the single world intervention graph in Figure 5a
[Spirtes et al., 2000], roughly meaning that the graph is minimal for the distribution.2

A.2 Comparison to Athey et al. [2019]

Athey et al. [2019] assume that the long-term outcome is independent of the treatment given the
short-term outcomes, A ⊥ Y | S,X,G = E. This is based on the surrogate criterion proposed by
Prentice [1989]. Crucially they show this condition enables identification even when A is missing in
the observational data, which can be extremely practical. This condition, however, rules out any
direct effect of the treatment on the long-term outcome and any confounding between short-term
and long-term outcomes, as might be induced by a persistent confounder.

2Formally, we say that a distribution P on the nodes of graph G is faithful to the graph G when for any random
variables (A,B,C) in the graph, A ⊥ B | C under the distribution P if and only if A and B are d-separated by C in
the graph G [Spirtes et al., 2000].
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Figure 4: Short-term confounders and outcome confounders in the observational data.
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(b) Causal graph for experimental data with persis-
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Figure 5: Graphs for persistent confounders.

In Figure 5b, we duplicate the causal diagram in Figure 1b, which describes the causal re-
lationship between variables in the experimental data. In the setting of Figure 5b, the surragacy
condition is violated when the distribution of the random variables (X,U,A, S, Y ) is faithful. (Note
we do not use a single world intervention graph here as the assumption is made on factual variables,
rather than on potential outcomes.) Indeed, in Figure 5b, the short-term outcomes S are colliders
between the treatment A and the persistent confounders U , so conditioning on S induces depen-
dence between the treatment A and the long-term outcome Y . Moreover, the treatment A can also
have direct causal effect on the long-term outcome Y . Therefore, unless the dependence due to the
direct causal effect of the treatment and the dependence due to conditioning on colliders happen to
cancel with each other (which cannot happen if the distribution is faithful), the surrogacy condition
in Athey et al. [2019] is violated.

B Selection Bridge Functions in Special Examples

B.1 Discrete Setting

Recall that in Example 1, we consider S1 = S2 = S3 =
{
s(j) : j = 1, . . . ,Ms

}
and U =

{
u(k) : k = 1, . . . ,Mu

}
.

For any s2 ∈ S2, a ∈ A, x ∈ X , let P (S1 | s2, a,U, x) ∈ RMs×Mu denote the matrix whose (j, k)th
element is

P
(
S1 = s(j) | S2 = s2, A = a, U = u(k), X = x,G = O

)
,

and r(s2,U, x; a) ∈ RMu denote the vector whose kth element is

p
(
s2, u(k), x | a,G = E

)
/p

(
s2, u(k), x | a,G = O

)
.
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The existence of a selection bridge function is equivalent to the existence of a solution z ∈ RMs to
the following linear equation system for any s2 ∈ S2, a ∈ A, x ∈ X :

[P (S1 | s2, a,U, x)]⊤ z = r(s2,U, x; a).

One sufficient condition for the existence of solutions to the equation above is that the matrix
P (S1 | s2, a,U, x) has full column rank for any s2 ∈ S2, a ∈ A, x ∈ X . This full column rank
condition means that S1 is strongly informative for U .

B.2 Linear Models

Recall that in Example 2, (Y, S3, S2, S1) are generated from the following linear structural equation
system:

Y = τyA+ α⊤
y S3 + β⊤y X + γ⊤y U + ϵy,

Sj = τjA+ αjSj−1 + βjX + γjU + ϵj , j ∈ {3, 2}
S1 = τ1A+ β1X + γ1U + ϵ1,

where τy, (τj , αy, βy, γy), (αj , βj , γj) are scalers, vectors, and matrices of conformable sizes respec-
tively, and ϵy, ϵj are independent mean-zero noise terms such that ϵy ⊥ (S,A,U,X) and ϵj ⊥
(Sj−1, . . . , S1, A, U,X).

We further assume P (A = 1 | U,X,G = E) = 1/2 and P (A = 1 | U,X,G = O) =
(
1 + exp(κ⊤1 U + κ⊤2 X)

)−1
.

We also assume that (ϵ3, ϵ2, ϵ1) follows a joint Gaussian distribution with zero mean and a diagonal
covariance matrix. Denote the covariance matrix for ϵj as σ2j Ij for j = 1, . . . , 3 where Ij is an
identity matrix of formable size.

Proposition 1. Given the data generating process described above, S1 | S2, A, U,X,G = O follows
a Gaussian distribution with conditional expectation

E [S1 | S2, A, U,X,G = O] = λ1S2 + λ2A+ λ3X + λ4U,

where

λ1 = σ21α
⊤
2

(
σ21α2α

⊤
2 + σ22I2

)−1
,

λ2 =

(
I1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2

)
τ1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
τ2

λ3 =

(
I1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2

)
β1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
β2

λ4 =

(
I1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2

)
γ1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
γ2.

When λ4 has full column rank, then for any θ̃1 such that θ̃⊤1 λ4 = κ⊤2 and a ∈ A, there exists a
selection bridge function of the following form for some matrices θ̃2, θ̃0 of conformable sizes and
some constants c1,a, c0,a:

q0(S2, S1, a,X) = c1,a exp
(
(−1)a

(
θ̃⊤2 S2 + θ̃⊤1 S1 + θ̃⊤0 X

))
+ c0,a.
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Figure 6: Distributions of the smallest singular values of the λ3 and γ4 matrices over 10000 repli-
cations. The vertical bar corresponds to the 0.1 singular value.

According to Proposition 1 and example 2, the outcome bridge function and selection bridge
function exist in this linear model setting if the matrix γ3 and λ4 have full column rank. To illustrate
these existence conditions, we also run a simple simulation study. Specifically, we generate data
according to the linear model above. We set dim(S1) = dim(S2) = dim(S3) = 2, draw all coefficients
τ, α, β, γ’s from the standard normal distribution, and all noise terms from the mean-zero normal
distribution with variance 0.5. We generate 10000 instances, compute the smallest singular values
of the corresponding γ3 and λ4 matrices, and report their distributions in Figure 6. We observe that
the smallest singular value of γ3 is larger than 0.1 around 88% of time and the smallest singular
value of λ4 is larger than 0.1 around 81% of time. These show that the existence of bridge functions
in Assumptions 6 and 7 may not always hold but it does hold in quite many scenarios.

C Completeness Conditions and Existence of Bridge Functions

The conditional moment equations in Equations (7) and (11) that define outcome bridge functions
and selection bridge functions are Fredholm integral equations of the first kind. Following Miao
et al. [2016], we characterize the existence of their solutions (i.e., the outcome and selection bridge
functions) by singular value decomposition of compact operators [Carrasco et al., 2007].

Let L2(p(z)) denote the space of all square integrable functions of z with respect to the dis-
tribution p(z). It is a Hilbert space with inner product ⟨f1, f2⟩ =

∫
f1(z)f2(z)p(z) dz. Consider

linear operators Ts2,a,x : L2(p(s3 | s2, a, x)) → L2(p(u | s2, a, x)), T ′
s2,a,x : L2(p(s1 | s2, a, x)) →

L2(p(u | s2, a, x)) defined as follows:

[Ts2,a,xh] (s2, a, u, x) = E [h(S3, S2, A,X) | S2 = s2, A = a, U = u,X = x,G = O] ,[
T ′
s2,a,xq

]
(s2, a, u, x) = E [q(S2, S1, A,X) | S2 = s2, A = a, U = u,X = x,G = O] .

Assumption 11. For any s2 ∈ S2, a ∈ A, x ∈ A,

1.
∫∫

p(s3 | s2, a, u, x)p(u | s3, s2, a, x) ds3 du <∞.

2.
∫∫

p(s1 | s2, a, u, x)p(u | s1, s2, a, x) ds1 du <∞.

According to Example 2.3 in Carrasco et al. [2007], Assumption 11 ensures that for any
s2 ∈ S2, a ∈ A, x ∈ A, Ts2,a,x, T ′

s2,a,x are both compact operators. Then by Theorem 2.41 in
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Carrasco et al. [2007], both of them admit singular value decomposition. Namely, there exist
(λs2,a,x,j , ψs2,a,x,j , ϕs2,a,x,j)

∞
j=1 and (λ′s2,a,x,j , ψ

′
s2,a,x,j

, ϕ′s2,a,x,j)
∞
j=1 such that for any j,

Ts2,a,xψs2,a,x,j = λs2,a,x,jϕs2,a,x,j

T ′
s2,a,xψ

′
s2,a,x,j = λ′s2,a,x,jϕ

′
s2,a,x,j .

Assumption 12. For any s2 ∈ S2, a ∈ A, x ∈ A,

1. E [Y | s2, a, u, x,G = O] and p(s2,u,x|a,G=E)
p(s2,u,x|a,G=O) both belong to L2(p(u | s2, a, x)).

2.
∑n

j=1 λ
−2
s2,a,x,j

|⟨E [Y | s2, a, u, x,G = O] , ϕs2,a,x,j⟩|
2 <∞.

3.
∑n

j=1 λ
′−2
s2,a,x,j

∣∣∣⟨p(s2,u,x|a,G=E)
p(s2,u,x|a,G=O) , ϕ

′
s2,a,x,j

⟩
∣∣∣2 <∞.

Under regularity conditions in Assumptions 11 and 12, it can be shown that completeness
conditions in Assumption 5 guarantee the existence of bridge functions.

Proposition 2 (Existence of Bridge Functions). Suppose that Assumptions 11 and 12 hold.

1. If the completeness condition in Assumption 5 condition 1 holds, then there exists an outcome
bridge function h0 satisfying Equation (7).

2. If the completeness condition in Assumption 5 condition 2 holds, then there exists an outcome
bridge function q0 satisfying Equation (11).

Proposition 2 can be proved by Picard’s Theorem [Kress et al., 1989, Theorem 15.18]. See
Lemma 2 in Miao et al. [2016] or Lemma 13 and 14 in Kallus et al. [2021] for details.

D Relaxing Assumptions 2 and 3

In this section, we present additional identification results under Assumptions 9 and 10 instead of
the stronger conditions in Assumptions 2 and 3, and discuss their relations to the existing literature.
We also discuss how to estimate the average long-term treatment effect in this case, based on the
doubly robust identification strategy in Theorem 8.

D.1 Identification

In Theorem 8, we consider extending the doubly robust identification strategy in Theorem 3, which
involves both outcome and selection bridge functions. We now show that based on Theorem 8, we
can also extend Theorems 1 and 2.

Corollary 1. Suppose Assumptions 1, 4, 9 and 10 hold.

1. If further the completeness condition in Assumption 5 condition 2 and Assumption 6 hold,
then the average long-term treatment effect can be identified by any function h0 that satisfies
Equation (9):

τ =
∑

a∈{0,1}

(−1)1−aE [E [h0(S3, S2, A,X) | A = a,X,G = E] | G = O] . (20)
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2. If further the completeness condition in Assumption 5 condition 1 and Assumption 7 hold,
then the average long-term treatment effect can be identified by any function q0 that satisfies
Equation (12) or Equation (13):

τ =
∑

a∈{0,1}

(−1)1−aE
[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

× q0 (S2, S1, A,X)Y | G = O

]
(21)

Proof for Corollary 1. Obviously, Equation (20) can be proved by setting h = h0, q = 0 in Theo-
rem 8 and Equation (21) can be proved by setting q = q0, h = 0 in Theorem 8.

We note that the two identification strategies in Corollary 1 are closely related to those in Athey
et al. [2020], Ghassami et al. [2022]. As we discussed in Remark 1, when there is no persistent
confounder, we can let S1 = S3 = ∅ and S = S2. Then h0(S2, A,X) = E [Y | S,A,X,G = O] is the
unique solution to Equation (9). As a result, the identification strategy in Equation (20) exactly
recovers the identification strategy in Theorem 1 in Athey et al. [2020]. Moreover, in the setup
in Ghassami et al. [2022], if we use S3 as their short-term outcomes, S1 as their auxiliary proxies,
and condition on S2 appropriately, then the identification strategies in their Theorems 9 and 10
coincide with ours in Equations (20) and (21) respectively. Compared to Ghassami et al. [2022],
we only require short-term outcomes without needing to search for additional external proxies. See
also discussions in Section 2.2 for additional comparisons.

Under the weaker conditions in Assumptions 9 and 10, Corollary 1 and theorem 8 shows that
we need more complex identification strategies for the average long-term treatment effect over the
observational data distribution. Actually, even in this case, the simpler identification strategies in
Sections 4.1 to 4.3 are still useful. Below we show that under an additional assumption, they can
identify average long-term treatment effect over the experimental data distribution.

Corollary 2. Suppose Assumptions 1, 4 to 7, 9 and 10 hold and Y (a) ⊥ G | S(a), U,X. Then
Equation (10) in Theorem 1, Equation (14) in Theorem 2 and Equation (15) in Theorem 3 all
identify the average long-term treatment effect over the experimental data distribution, i.e.,

τE = E [Y (1)− Y (0) | G = E] ,

In Corollary 2, we still assume the weaker conditions in Assumptions 9 and 10. But we addition-
ally require that the experimental and observational data share a common conditional distribution
of the potential long-term outcome. This additional assumption ensures that the bridge functions
defined in terms of the observational data distribution can also be used to identify the average
long-term treatment effect over the experimental data distribution.

Finally, we note that the selection bridge functions can be used to identify more general param-
eters than the average treatment effects considered so far.

Corollary 3. Suppose Assumptions 1, 4, 9 and 10 and the assumptions in Corollary 1 condition
2 hold. Then for any function q0 that satisfies Equation (12) or Equation (13), and any transfor-
mation r : Y 7→ R, we have

E [r(Y (a)) | G = O] = E
[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

× q0 (S2, S1, A,X) r(Y ) | G = O

]
.
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In particular, when applying Corollary 3 to the indicator function r(·) = I [· ≤ y] for all y ∈ Y,
we can identify the entire distribution of the counterfactual long term outcome Y (a).

D.2 Estimation

We can again leverage the doubly robust identification strategy in Theorem 8 to estimate the average
long-term treatment effect. This involves some nuisance functions/parameters η∗ = (η∗1, η

∗
2, . . . , η

∗
7):

η∗1(S3, S2, A,X) = h0(S3, S2, A,X), η∗2(X) = {E [h0(S3, S2, A,X) | A = a,X,G = E] : a = 0, 1} ,
η∗3(S2, S1, A,X) = q0(S2, S1, A,X), η∗4(X) = {P (A = a | X,G = E) : a = 0, 1} ,

η∗5(X) =
P (G = O | X)

P (G = E | X)
, η∗6 =

P (G = E | A = a)

P (G = O | A = a)
, η∗7 =

P (G = E)

P (G = O)
.

According to Theorem 8, once we know these nuisance functions/parameters, we immediately have

τ =
∑

a∈{0,1}

(−1)1−a{E [ϕ1(Y, S, a,X; η∗) | G = O]

+ E [ϕ2(Y, S, a,X; η∗) | G = E] + E [ϕ3(Y, S, a,X; η∗) | G = O]
}
, (22)

where

ϕ1(Y, S, a,X; η∗) = h̄E,0(a,X) = E [h0(S3, S2, a,X) | A = a,X,G = E]

ϕ2(Y, S, a,X; η∗) =
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

(
h0(S3, S2, a,X)− h̄E,0(a,X)

)
ϕ3(Y, S, a,X; η∗) =

P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

× q0 (S2, S1, a,X) (Y − h0 (S3, S2, A,X)) .

Again, we can follow Section 5 to construct an average long-term treatment effect estimator by
plugging estimates in place of unknown nuisances above. In particular, we can use a cross-fitting
procedure similar to Definition 1. Namely, we first split the two datasets into multiple folds, and
for each fold, we estimate the treatment effect with plug-in nuisance estimates trained on the out-
of-fold data, and finally average all treatment effect estimates across different folds. We denote the
resulting cross-fitted treatment effect estimator as τ̂ .

In the following lemma, we prove that the doubly robust equation above satisfies the so-called
Neyman orthogonality property, which means that the corresponding treatment effect estimator is
insensitive to estimation errors of the nuisance functions/parameters.

Lemma 3. The estimating equation implied by Equation (22) satisfies the Neyman Orthogonality
property, namely, the pathwise derivative of the following map at η∗ along any feasible direction is
equal to 0:

η 7→
∑

a∈{0,1}

(−1)1−a{E [ϕ1(Y, S, a,X; η) | G = O]

+ E [ϕ2(Y, S, a,X; η) | G = E] + E [ϕ3(Y, S, a,X; η) | G = O]
}
. (23)

The Neyman orthogonality property plays a central role in the recent debiased machine learning
literature [e.g., Chernozhukov et al., 2019]. It protects the estimator of primary parameters from
the errors in estimating nuisance parameters, so that even when the nuisance estimators have slow
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convergence rates (e.g., nonparametric machine learning estimators), the final estimator is still√
n-consistent and asymptotically normal. In the following theorem, we show that this is the case

for our cross-fitted average long-term treatment effect estimator.

Theorem 10. Suppose Assumptions 1, 4 to 7, 9 and 10 hold, and the nuisance estimator for every
function in η∗ converges to the truth at oP

(
n−1/4

)
rate in terms of its root mean squared error.

Then

√
n(τ̂ − τ)⇝ N

(
0, σ2

)
,

where

σ2 = (1 + λ)E
[
(ϕ1(Y, S, 1, X; η∗)− ϕ1(Y, S, 0, X; η∗)− τ)2 | G = O

]
+

1 + λ

λ
E
[
(ϕ2(Y, S, 1, X; η∗)− ϕ2(Y, S, 0, X; η∗))2 | G = E

]
+ (1 + λ)E

[
(ϕ3(Y, S, 1, X; η∗)− ϕ3(Y, S, 0, X; η∗))2 | G = O

]
.

In Theorem 10, we show that as long as the nuisance functions are consistently estimated at
oP
(
n−1/4

)
rate, the cross-fitted treatment effect estimator τ̂ is

√
n-consistent and has an asymptotic

normal distribution.

E Additional Extensions

In this section, we extend our identification results to more settings. For simplicity, we focus on
extending the first identification strategy in Theorem 1.

E.1 Pre-treatment Outcomes

In the main text, the short-term outcomes S = (S1, S2, S3) are all post-treatment outcomes. In
this part, we let part of the outcomes be pre-treatment.

We first consider the setting where S1 is pre-treatment but S2, S3 are post-treatment. Below
we modify Assumptions 1 to 4 accordingly.

Assumption 13 (Pre-treatment S1). Suppose the following hold for a ∈ {0, 1}:

1. On the observational data, we have (Y (a), S3(a), S2(a)) ⊥ A | S1, U,X,G = O and 0 <
P (A = 1 | S1, U,X,G = O) < 1 almost surely.

2. On the experimental data, we have (Y (a), S3(a), S2(a), U) ⊥ A | S1, X,G = E and 0 <
P (A = 1 | S1, X,G = O) < 1 almost surely.

3. The external validity (S3(a), S2(a), U) ⊥ G | S1, X and overlap

p(S1, U,X | A = a,G = E)

p(S1, U,X | A = a,G = O)
<∞, almost surely.

4. The sequential structure (Y (a), S3(a)) ⊥ S1 | S2(a), U,X,G = O.

Note that Assumption 13 consider the most general setting: we allow the treatment assignments
in the observational and experimental data to depend on pre-treatment outcomes S1, and also allow
the distribution of S1 to be different on the two datasets. Now we extend our identification strategy
to this setting.
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A YS1 S2 S3

U♢U† U♯

(a) Observational data.

A YS1 S2 S3

U♢U† U♯

(b) Experiment sample.

Figure 7: unobserved confounders (U♯, U†) that can be ignored. Additional covariates X can be
present but we do not draw them to avoid cluttering the graphs.

Corollary 4. Suppose conditions in Assumption 13, the completeness condition in Assumption 5
condition 2 and Assumption 6 hold. Then the average long-term treatment effect is identifiable: for
any function h0 that satisfies Equation (9),

τ = E [E [h0(S3, S2, A,X) | S1, A = 1, X,G = E] | G = O]

− E [E [h0(S3, S2, A,X) | S1, A = 0, X,G = E] | G = O] . (24)

The identification strategy in Equation (24) is very similar to Equation (20). Equation (24)
essentially augments the covariates X with the pre-treatment outcomes S1.

Similarly, we can also consider the setting where both S1 and S2 are pre-treatment.

Assumption 14 (Pre-treatment (S1, S2)). Suppose the following hold for a ∈ {0, 1}:

1. On the observational data, we have (Y (a), S3(a)) ⊥ A | S2, S1, U,X,G = O and 0 <
P (A = 1 | S2, S1, U,X,G = O) < 1 almost surely.

2. On the experimental data, we have (Y (a), S3(a), U) ⊥ A | S2, S1, X,G = E and 0 <
P (A = 1 | S2, S1, X,G = O) < 1 almost surely.

3. The external validity (S3(a), U) ⊥ G | S2, S1, X and overlap

p(S2, S1, U,X | A = a,G = E)

p(S2, S1, U,X | A = a,G = O)
<∞, almost surely.

4. The sequential structure (Y (a), S3(a)) ⊥ S1 | S2, U,X,G = O.

We can analogously identify the long-term average treatment effect

Corollary 5. Suppose conditions in Assumption 14, the completeness condition in Assumption 5
condition 2 and Assumption 6 hold. Then the average long-term treatment effect is identifiable: for
any function h0 that satisfies Equation (9),

τ = E [E [h0(S3, S2, A,X) | S2, S1, A = 1, X,G = E] | G = O]

− E [E [h0(S3, S2, A,X) | S2, S1, A = 0, X,G = E] | G = O] . (25)
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E.2 Partial Confounding Adjustments

In the main text, the unobseved variables U stand for all unobserved confounders that can possibly
affect the treatment, the short-term outcomes, the long-term outcome, or any subset of them (see
Figure 3). The identification strategies in Section 4 require the short-term outcomes (S1, S3) to be
sufficiently rich relative to all of the unobserved confounders. In this part, we show that actually
we do not need to use the short-term outcomes to handle all such unobserved confounders. Instead,
we can achieve identification under lower requirements for the short-term outcomes, still using the
same identification strategies.

In Figure 7, we plot three different types of unobserved confounders: confounders U⋄ can affect
any of (Y, S3, S2, S1, A), confounders U† can affect (S2, S1, A) but not (S3, Y ), while confounders
U♯ can affect (S3, Y ) but not (S2, S1, A). Naively, one can view U = (U⋄, U†, U♯) and argue identi-
fiability following any of Theorems 1 to 3. This would require the short-term outcomes (S1, S3) to
be rich enough relative to all of (U⋄, U†, U♯). Now we show that this is not necessary. Instead, we
need (S1, S3) to be rich enough relative to only U⋄, but not necessarily (U†, U♯).

We first extend Assumptions 1 to 4 to the current setting, by substituting U⋄ for U in these
previous assumptions.

Assumption 15. Assume the following conditions hold for any a ∈ {0, 1} :

1. (Y (a), S3(a)) ⊥ A | S2(a), U⋄, X,G = O and 0 < P (A = 1 | U⋄, X,G = O) < 1 almost surely.

2. (S2(a), U⋄) ⊥ A | X,G = E and 0 < P (A = 1 | X,G = E) < 1 almost surely.

3. (S3(a), S2(a), U⋄) ⊥ G | X, and

p(U⋄, X | A = a,G = E)

p(U⋄, X | A = a,G = O)
<∞.

4. (Y (a), S3(a)) ⊥ S1(a) | S2(a), U⋄, X,G = O.

It is easy to verify that the current setting depicted in Figure 7 can satisfy Assumption 15. More-
over, below we modify the completeness condition in Assumption 5 condition 2 and the outcome
bridge function assumption in Assumption 6.

Assumption 16. 1. For any s2 ∈ S2, a ∈ {0, 1}, x ∈ X ,

if E [g(U⋄) | S1, S2 = s2, A = a,X = x,G = O] = 0 holds almost surely,

then g(U⋄) = 0 almost surely.

2. There exists an outcome bridge function h0 : S3 × S2 ×A×X → R such that

E [Y | S2, A, U⋄, X,G = O] = E [h0(S3, S2, A,X) | S2, A, U⋄, X,G = O] . (26)

In Assumption 16(a), we assume a partial completeness condition, which only require the short-
term outcomes S1 to be rich enough relative to U⋄. In Assumption 16(b), we only require the bridge
function to capture the unmeasured confounding due to U⋄. This is possible when the short-term
outcomes S3 are rich enough relative to U⋄. Importantly, we do not need S1, S3 to be rich enough
relative to (U⋄, U†, U♯) together.

Then we show that the long-term average treatment effect can be identified according to the
equation we derived in Corollary 1. This means actually the same identification strategy still works
under lower requirements on the short-term outcomes.

Corollary 6. Suppose Assumptions 15 and 16 hold. Then the average long-term treatment effect
is identifiable: for any function h0 that satisfies Equation (9), Equation (20) in Corollary 1 holds.
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E.3 Relaxing the External Validity Assumption

In Section 6 Assumption 9, we assumed the external validity condition that the distributions of
the unobserved confounders U on the two datasets, conditional on the covariates X, are identical.
In this section, we show that this assumption can be weakened, provided that S1 and S2 are both
pre-treatment outcomes. Specifically, we assume the following condition.

Assumption 17. Suppose that for any a ∈ {0, 1},

G ⊥ S3(a) | S2, S1, U,X.

Assumption 17 imposes that the distributions of the potential short-term outcome S3(a) are
identical on the two datasets, conditional on the pre-treatment outcomes S2, S1, the unobserved
confounders U , and the observed covariates X. Importantly, this assumption is weaker than the
condition G ⊥ (S3(a), U) | S2, S1, X, allowing for distribution shift of the unobserved confounders
U . To handle the lack of external validity, we again view the short-term outcomes as proxies for the
unobserved confounders. Specifically, we rely on the following external validity bridge function.

Assumption 18 (External validity bridge function). There exists an external validity bridge func-
tion q̃ : S2 × S1 ×A×X → R defined as follows:

p(S2, U,X | A,G = O)

p(S2, U,X | A,G = E)
= E[q̃(S2, S1, A,X) | S2, A, U,X,G = E] (27)

The external validity bridge function in Assumption 18 Equation (27) is very similar to the
selection bridge function in Assumption 7 Equation (11). There are only two differences: one is
that the left hand side of Equation (27) is the reciprocal of the left hand side of Equation (11), and
the other is that the right hand side of Equation (27) involves a conditional expectation over the
experimental data rather than the observational data. We will show that the external validity bridge
function can adjust for the discrepancy in the distributions of unobserved confounders between the
two datasets. Since the external validity bridge function in Equation (27) is defined in terms of
unobserved confounders, we cannot directly use this definition to learn an external validity bridge
function. Instead, we give an alternative formulation that involves only the observed variables.

Lemma 4. Assume Assumption 14 conditions 1, 2, 4, Assumption 17, and the completeness con-
dition in Assumption 5 condition 2. Then any function q̃ that satisfies

p(S3, S2, X | A,G = O)

p(S3, S2, X | A,G = E)
= E[q̃(S1, S2, X,A) | S2, X, S3, A,G = E]

is also a valid external validity bridge function in the sense of Equation (27).

In the theorem below, we further show that the the average treatment effect can be identified
by any external validity function and any outcome bridge function.

Theorem 11. Assume the assumptions in Lemma 4, Assumption 6, and (S2, S1, U,X) ⊥ A | G =
E hold. Let q̃ and h be any functions that satisfy Equation (27) and Equation (9) respectively.
Then for a ∈ {0, 1}, we have

E[Y (a) | S2, X,G = O] = m(S2, a,X)
p(S2, X | G = E)

p(S2, X | G = O)
,
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where

m(S2, a,X) :=

E

[
E[h(S3, S2, X,A) | S2, S1, X,G = E,A = a]

∑
a′

P
(
A = a′ | G = O

)
q̃
(
S2, S1, X, a

′) | S2, X,A = a,G = E

]
.

Moreover, we have

τ = E [m(S2, X, 1)−m(S2, X, 0) | G = E] .

F Additional Results for Numerical Studies

F.1 Additional Details for Section 7.1

In the following proposition, we justify the sampling probability function described in Section 7.1.1.

Proposition 3. Let (Z1, Z2, A) be a random vector with (Z1, Z2) ⊥ A and A ∈ {0, 1}. Let G ∈
{0, 1} be a binary random variable such that G ⊥ Z2 | Z1 and

P (G = 1 | Z1, A = 1)P (A = 1) + P (G = 1 | Z1, A = 0)P (A = 0) ≡ C,

where C is a positive constant. Then the probability density of (Z1, Z2) satisfies that

p(z1, z2 | G = 1) ≡ p(z1, z2), ∀z1, z2.

We can let Z1 be the education level U , Z2 be other covariates and the potential short-term
outcomes, A be the GAIN treatment assignment, and G be the indicator for whether being selected
into the observational dataset DO. Then Proposition 3 means that the subsampling procedure does
not change the distribution of latent confounders, covariates, and potential short-term outcomes.
This explains why the subsampling is not against Assumption 3.

F.2 Additional Results for Section 7.1

We further use data to probe the plausibility of the Assumptions 6 and 7 in our GAIN case study.
According to Example 1, in a discrete setting, Assumptions 6 and 7 hold when certain conditional
probability matrices have full column rank. We note that the outcomes in the GAIN dataset
empirical example are all discrete, so we we design some heurstic assessments here to shed some
light on Assumptions 6 and 7 in the empirical study. Based on the GAIN dataset, we estimate
the conditional probability matrices P (S1 | S2 = s2, A = a,U) and P (S3 | S2 = s2, A = a,U)
by their empirical frequencies (we do not condition on X since this is difficult noting that X is
multi-dimensional and some components are continuous), for s2 ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} and
a ∈ {0, 1}. We vary the dimension of S1 and S3 (i.e., the number of employment status variables
included in S1, S3 respectively) from 2 to 6 while fixing the dimension of S2 as 2 (the number we
used in our original numerical study). The smallest singular values of the corresponding empirical
probability matrices are calculated and shown in Table 3. We can observe that the smallest singular
value gets consistently larger as dimension of S1 and S3 increases, unless when the smallest singular
value is already sufficiently large. This heuristically suggests that Assumptions 6 and 7 are more
likely to hold if we incorporate more short-term outcomes in S1, S3, validating our high level
intuitions discussed above.
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dim(S1) s2 P (S1 | S2 = s2, A = 0,U) P (S3 | S2 = s2, A = 0,U) P (S1 | S2 = s2, A = 1,U) P (S3 | S2 = s2, A = 1,U)

2

(0, 0) 0.016 0.012 0.002 0.007
(1, 0) 0.015 0.068 0.059 0.018
(0, 1) 0.014 0.019 0.002 0.024
(1, 1) 0.026 0.038 0.010 0.020

4

(0, 0) 0.023 0.023 0.018 0.009
(1, 0) 0.190 0.125 0.072 0.055
(0, 1) 0.123 0.185 0.067 0.032
(1, 1) 0.063 0.084 0.036 0.028

6

(0, 0) 0.028 0.020 0.020 0.014
(1, 0) 0.134 0.145 0.068 0.053
(0, 1) 0.151 0.165 0.070 0.083
(1, 1) 0.084 0.072 0.040 0.037

Table 3: List of smallest singular values of the empirical estimates of the conditional probability
matrices P (S1 | S2 = s2, A = a,U) and P (S3 | S2 = s2, A = a,U) for s2 = (0, 0), . . . , (1, 1), a = 0, 1
with different dimension of S1 and S3. Here we keep throughout the dimension of S1 and S3 to be
the same. The dimension of S1 corresponds to the number of quarters included in the surrogate.
Here dim(S1) = 2 means that S1, S2 and S3 take the employment status of 1 − 2-th quarters,
3 − 4-th quarters and 5 − 6-th quarters after the treatment respectively; dim(S1) = 4 means the
three surrogates take 1− 4-th quarters, 5− 6-th quarters and 7− 10-th quarters respectively; and
dim(S1) = 6 means the three surrogates take 1 − 6-th quarters, 7 − 8-th quarters and 9 − 14-th
quarters respectively.

Of course, in Table 3 some smallest singular values are indeed fairly small, posing threats to
Assumptions 6 and 7. However, we find that across all these settings, the performance of our
proposed estimator is overall stable and it is significantly better than the existing state-of-art
estimator in Athey et al. [2020]. These results show potential benefit of using our method to
account for general unobserved confounding, even if our assumptions may not necessarily hold
exactly.

Specifically, we already show the performance of our estimator in Section 7.1 Table 1 for the
setting dim(S1) = dim(S2) = dim(S3) = 2. In Table 4, we generate the data in the same way as in
Table 1, but with (S1, S2, S3) as the employment status in the 1− 4-th quarters, 5− 6-th quarters,
and 7 − 10-th quarters. In other words, we keep dim(S2) = 2 but increase the dimension of both
S1 and S3 to dim(S2) = dim(S3) = 4. In Table 5, we set (S1, S2, S3) as the employment status in
1−6-th quarters, 7−8-th quarters and 9−14-th quarters, i.e., we increase the dimesnion of S1 and
S3 to dim(S2) = dim(S3) = 6. Apparently, with ridge regularization (namely the “.33”, “.67” and
“1” columns), our estimator is still consistently better than Athey et al. [2020] by a large margin,
showing that the performance of our estimator is stable with respect to the number of quarters
in surrogate construction. Interestingly, with the existence of ridge regularization, our estimator
can perform slightly worse as we increase the dimension of surrogates, which may be due to the
non-uniqueness of bridge functions. When the ridge regularization does not exist (namely the “0”
column), our estimator can be quite unstable, sometimes even worse than the naive estimator. Such
phenomenon has also been observed Table 1.

F.3 Implementation details of the minimax approach in Section 7.2

In this section, we provide implementation details of the minimax approach in Section 7.2. To

42



τ̂OTC τ̂SEL τ̂DR Athey et al. Naive

η 0 .33 .67 1 0 .33 .67 1 0 .33 .67 1 NR CV

0
MAE -560 74 76 77 81 78 83 85 -465 78 81 81 13 33 0.053
Med -560 74 76 77 81 78 83 85 -465 78 81 81 13 33 0.053

0.2
MAE -416 73 74 74 78 78 78 78 -363 77 79 79 21 31 0.059
Med 33 72 74 74 78 77 77 78 41 77 78 79 21 31 0.059

0.4
MAE -150 71 72 72 75 75 75 75 -151 76 77 77 27 28 0.067
Med 43 71 72 72 75 76 75 76 45 76 77 77 28 29 0.067

0.6
MAE -577 68 68 68 72 72 72 72 -574 73 74 74 34 25 0.076
Med 44 68 68 68 73 72 73 72 47 74 74 74 34 25 0.076

0.8
MAE -685 63 63 63 67 67 67 67 -652 69 70 69 37 21 0.088
Med 534 62 62 62 67 67 67 67 37 69 69 69 37 21 0.088

1
MAE -135 63 63 63 68 68 68 68 -139 70 70 70 38 18 0.095
Med 35 63 63 62 69 69 69 68 36 70 70 71 39 18 0.095

1.2
MAE -237 62 62 62 68 68 68 68 -213 70 70 70 38 15 0.104
Med 28 62 62 62 69 69 69 68 31 71 71 71 39 15 0.104

1.4
MAE -241 61 60 59 69 69 68 68 -254 70 70 70 37 11 0.115
Med 11 61 61 60 71 71 71 70 14 73 73 72 36 11 0.115

1.6
MAE -271 59 58 57 68 68 68 68 -292 70 70 69 37 10 0.124
Med 4 60 59 58 71 71 71 70 5 73 72 72 36 10 0.124

Table 4: Same as Table 1, but with S1, S2, S3 taking the quarters 1− 4, 5− 6 and 7− 10.

τ̂OTC τ̂SEL τ̂DR Athey et al. Naive

η 0 .33 .67 1 0 .33 .67 1 0 .33 .67 1 NR CV

0
MAE -1030 74 72 71 75 73 75 72 -1010 77 76 75 17 39 0.053
Med -1030 74 72 71 75 73 75 72 -1010 77 76 75 17 39 0.053

0.2
MAE -9723 72 70 69 75 75 74 74 -9789 76 75 74 23 39 0.059
Med -184 72 70 69 75 75 74 74 -184 76 75 74 23 38 0.059

0.4
MAE -1102 70 68 67 74 73 73 73 -1113 74 73 73 29 38 0.067
Med -152 70 68 67 74 73 73 73 -152 75 74 73 29 38 0.067

0.6
MAE -861 67 65 64 72 71 71 71 -876 72 71 70 35 36 0.076
Med -149 67 65 64 72 72 71 71 -152 72 72 71 35 36 0.076

0.8
MAE -8496 62 60 59 68 68 67 67 -8513 69 67 67 37 32 0.088
Med -94 61 59 58 68 68 67 66 -92 69 67 67 37 32 0.088

1
MAE -640 59 58 57 68 68 67 67 -645 67 66 66 38 30 0.095
Med -111 59 58 57 69 68 67 67 -112 67 66 66 38 29 0.095

1.2
MAE -459 57 55 55 68 67 67 66 -467 65 65 64 37 26 0.104
Med -96 57 56 55 69 68 68 68 -102 66 66 65 37 26 0.104

1.4
MAE -2157 53 51 51 66 66 66 65 -2210 63 63 63 33 21 0.115
Med -96 53 52 51 69 68 67 67 -101 65 64 64 33 21 0.115

1.6
MAE -683 50 49 48 66 65 65 64 -714 62 62 62 31 17 0.124
Med -73 50 49 48 68 67 66 66 -78 64 63 63 31 17 0.124

Table 5: Same as Table 1, but with S1, S2, S3 taking the quarters 1− 6, 7− 8 and 9− 14.
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construct the outcome bridge function, we set the outer minimization function class as a neural
network class with four layers. For dim(X) = 10, 15, 20, we choose the number of neurons in first
and second hidden layers to be 50 and 10, respectively; for dim(X) = 5, we change the number of
neurons in the first hidden layer to 30. We set the momentum, learning rate, number of epochs of
the neural network optimizer to be 0.95, 0.0002 and 40, respectively; and set the size of each batch
to be 1 / 10 of the total sample size. We use the ReLU activation function for the first three layers
and set the activation function for the last layer as a linear function. For the inner maximization
function class, we set it a RKHS class with a product radial basis function kernel. To construct the
selection bridge function, we use a similar neural architecture as in the outcome bridge function
construction, except that we set the activation function in the last layer as a softplus activation
function; for the inner maximization function class, we use a RKHS with a linear kernel.

G Proofs

G.1 Supporting Lemmas

Lemma 5. Under Assumptions 1 to 3, we have

(S3, S2) ⊥ G | A,U,X. (28)

Proof. For any a ∈ A, s3 ∈ S3, s2 ∈ S2 and g ∈ {E,O}, we have

pS3,S2(s3, s2 | U,X,A = a,G = g) = pS3(a),S2(a)(s3, s2 | U,X,A = a,G = g)

= pS3(a),S2(a)(s3, s2 | U,X,G = g)

= pS3(a),S2(a)(s3, s2 | U,X)

= pS3,S2(s3, s2 | U,X,A = a),

where the second equation follows from Assumptions 1 and 2 and the third equation follows from
Assumption 3.

Lemma 6. Under Assumptions 1 and 4, we have

(Y, S3) ⊥ S1 | S2, A, U,X,G = O. (29)

Proof. For any a ∈ A, s ∈ S2 and any bounded continous functions f : Y×S3 → R and g : S1 → R,
we have

E [f(Y, S3)g(S1) | S2 = s, U,X,A = a,G = O]

=E [f(Y (a), S3(a))g(S1(a)) | S2(a) = s, U,X,A = a,G = O]

=E [f(Y (a), S3(a))g(S1(a)) | S2(a) = s, U,X,G = O]

=E [f(Y (a), S3(a)) | S2(a) = s, U,X,G = O]E [g(S1(a)) | S2(a) = s, U,X,G = O]

=E [f(Y, S3) | S2 = s, U,X,A = a,G = O]E [g(S1) | S2 = s, U,X,A = a,G = O] ,

where the second equation follows from Assumption 1, the third equation follows from Equation (6)
in Assumption 4 , and the fourth equation again follows from Assumption 1.

Lemma 7. Under Assumption 3, for any a ∈ A, the following holds almost surely:

p(S2, U,X | A = a,G = E)

p(S2, U,X | A = a,G = O)
=
p(U,X | A = a,G = E)

p(U,X | A = a,G = O)
<∞ (30)
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Proof. This is proved by noting that

p(S2, U,X | A = a,G = E)

p(S2, U,X | A = a,G = O)
=
p(S2(a), U,X | A = a,G = E)

p(S2(a), U,X | A = a,G = O)

=
p(S2(a) | U,X,A = a,G = E)

p(S2(a) | U,X,A = a,G = O)

p(U,X | A = a,G = E)

p(U,X | A = a,G = O)

=
p(U,X | A = a,G = E)

p(U,X | A = a,G = O)
<∞.

where the last equation follows from Equation (4) in Assumption 3.

G.2 Proofs for Section 4.1

Proof for lemma 1. In lemma 6, we already proved that Assumptions 1 and 4 imply

(Y, S3) ⊥ S1 | S2, A, U,X,G = O.

Therefore, for any function h0(S3, S2, A,X), we have

E [Y | S2, S1, A,G = O] = E [E [Y | S2, S1, A, U,X,G = O] | S2, S1, A,X,G = O]

= E [E [Y | S2, A, U,X,G = O] | S2, S1, A,X,G = O] ,

and

E [h0(S3, S2, A,X) | S2, S1, A,X,G = O]

=E [E [h0(S3, S2, A,X) | S2, S1, A, U,X,G = O] | S2, S1, A,X,G = O]

=E [E [h0(S3, S2, A,X) | S2, A, U,X,G = O] | S2, S1, A,X,G = O] .

Therefore, for any h0(S3, S2, A,X) that satisfies eq. (7), we have

0 = E [Y − h0(S3, S2, A,X) | S2, S1, A,X,G = O]

= E [E [Y − h0(S3, S2, A,X) | S2, A, U,X,G = O] | S2, S1, A,X,G = O] .

It follows from the completeness condition in Assumption 5 condition 2 that

E [Y − h0(S3, S2, A,X) | S2, A, U,X,G = O] = 0,

Namely, any function h0(S3, S2, A,X) that satisfies eq. (9) is a valid outcome bridge function
satisfying eq. (7).

Proof for theorem 1. According to Lemma 1, any function h0 that solves Equation (9) also satisfies
Equation (7). Thus we only need to show that for any function h0 that solves Equation (7), we
have µ(a) = E [h0(S3, S2, A,X) | A = a,G = E]. This is proved as follows:

E [h0(S3, S2, A,X) | A = a,G = E]

=E [E [h0(S3, S2, a,X) | S2, A = a, U,X,G = E] | A = a,G = E]

=E [E [h0(S3, S2, a,X) | S2, A = a, U,X,G = O] | A = a,G = E]

=E [E [Y | S2, A = a, U,X,G = O] | A = a,G = E]

=E [E [Y (a) | S2(a), U,X,G = O] | A = a,G = E]

=E [E [Y (a) | S2(a), U,X,G = O] | G = E]

=E [E [Y (a) | S2(a), U,X,G = O] | G = O] = E [Y (a) | G = O] = µ(a),
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where the second equation uses the fact that G ⊥ S3 | S2, A = a, U,X (see Equation (28) in
Lemma 5) and Equation (30) in Lemma 7, the third equation uses the definition of the outcome
bridge function, the fourth equation uses the fact that Y (a) ⊥ A | S2(a), U,X,G = O according to
Assumption 1, the fifth uses the fact that (S2(a), U,X) ⊥ A | G = E according to Assumption 2,
and the sixth equation holds because G ⊥ (S2(a), U,X) in Assumption 3 and Equation (30) in
Lemma 7.

G.3 Proofs for Section 4.2

Proof for Lemma 2. First note that

p(S3, S2, X | A,G = E)

=

∫
p(S3 | S2, A, U = u,X,G = E)p(S2, u,X | A,G = E) du

=

∫
p(S3 | S2, A, U = u,X,G = O)p(S2, u,X | A,G = E) du,

where the second equation follows from S3 ⊥ G | S2, A, U,X that we prove in Lemma 5.
Next, note that

p(S3, S2, X | A,G = O)E [q0(S2, S1, A,X) | S3, S2, A,X,G = O]

=p(S3, S2, X | A,G = O)

∫
p(u | S3, S2, A,X,G = O)E [q0(S2, S1, A,X) | S3, S2, A, U = u,X,G = O] du

=p(S3, S2, X | A,G = O)

∫
p(u | S3, S2, A,X,G = O)E [q0(S2, S1, A,X) | S2, A, U = u,X,G = O] du

=

∫
p(S3, S2, u,X | A,G = O)E [q0(S2, S1, A,X) | S2, A, U = u,X,G = O] du

=

∫
p(S3 | S2, A, U = u,X,G = O)p(S2, u,X | A,G = O)E [q0(S2, S1, A,X) | S2, A, U = u,X,G = O] du,

where the second equation follows from S1 ⊥ S3 | S2, A, U,X,G = O that we prove in Lemma 6.
Therefore, any function q0 that satisfies Equation (12) must satisfy∫

p(S3 | S2, A, U = u,X,G = O)∆(S2, A, u,X) du = 0,

where

∆(S2, A, U,X) = p(S2, U,X | A,G = E)− p(S2, U,X | A,G = O)E [q0(S2, S1, A,X) | S2, A, U,X,G = O] .

By Bayes rule, this is equivalent to

P (S3 | S2, A,X,G = O)E
[

∆(S2, A, U,X)

p(U | S2, A,X,G = O)
| S3, S2, A,X,G = O

]
= 0.

According to assumption 5 condition 1, we have ∆(S2, A, U,X) = 0 almost surely. In other words,
if q0 satisfies Equation (12), then it must also satisfy Equation (11).

Lemma 8. Under assumptions in Lemma 2, Equation (12) is equivalent to Equation (13).

46



Proof. Note that Equation (12) is equivalent to

E [q0(S2, S1, A,X) | S3, S2, A,X,G = O] =
p(S3, S2, X | A,G = E)

p(S3, S2, X | A,G = O)

=
P (G = E | S3, S2, A,X)P (G = O | A)
P (G = O | S3, S2, A,X)P (G = E | A)

=
(1− P (G = O | S3, S2, A,X))P (G = O | A)

P (G = O | S3, S2, A,X)P (G = E | A)
.

It is equivalent to

P (G = O | S3, S2, A,X)E
[
P (G = E | A)
P (G = O | A)

q0(S2, S1, A,X) | S3, S2, A,X,G = O

]
=1− P (G = O | S3, S2, A,X) ,

or

P (G = O | S3, S2, A,X)E
[
P (G = E | A)
P (G = O | A)

q0(S2, S1, A,X) + 1 | S3, S2, A,G = O

]
= 1.

The conclusion then follows straightforwardly.

Proof for Theorem 2. According to Lemma 2, any function q0 that solves Equation (12) or Equa-
tion (13) must also satisfy Equation (11). Thus we only need to show that for any q0 that solves
Equation (11), we have

µ(a) = E [q(S2, S1, A,X)Y | A = a,G = O] .

This is proved as follows:

E [q0(S2, S1, A,X)Y | A = a,G = O]

=E [E [q0(S2, S1, A,X)Y | S2, A, U,X,G = O] | A = a,G = O]

=E [E [q0(S2, S1, A,X) | S2, A, U,X,G = O]E [Y | S2, A, U,X,G = O] | A = a,G = O]

=E
[
E [q0(S2(a), S1(a), A,X) | S2(a), A = a, U,X,G = O]

× E [Y (a) | S2(a), A = a, U,X,G = O] | A = a,G = O

]
=E [E [q0(S2, S1, A,X) | S2, A, U,X,G = O]E [Y (a) | S2(a), U,X,G = O] | A = a,G = O]

=E
[
p(S2, U,X | A,G = E)

p(S2, U,X | A,G = O)
E [Y (a) | S2(a), U,X,G = O] | A = a,G = O

]
=E

[
p(S2(a), U,X | A = a,G = E)

p(S2(a), U,X | A = a,G = O)
E [Y (a) | S2(a), U,X,G = O] | A = a,G = O

]
=E [E [Y (a) | S2(a), U,X,G = O] | A = a,G = E]

=E [E [Y (a) | S2(a), U,X,G = O] | G = E]

=E [E [Y (a) | S2(a), U,X,G = O] | G = O]

=E [Y (a) | G = O] = µ(a).

Here the second equation uses the fact that Y ⊥ S1 | S2, A, U,X,G = O that we prove in Lemma 6,
the fourth equation uses the fact that Y (a) ⊥ A | S2(a), U,X,G = O according to Assumption 1,
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the fifth equation uses the definition of the selection bridge function q0(S2, S1, A,X), the seventh
equation uses change of measure, the eighth equation uses the fact that A ⊥ (S2(a), U,X) | G = E
according to Assumption 2, and the ninth equation uses the fact that G ⊥ (S2(a), U,X) according
to Assumption 3.

G.4 Proofs for Section 4.3

Proof for Theorem 3. If conditions in Theorem 1 hold and h = h0 satisfies Equation (9), then

E [h(S3, S2, A,X) | A = a,G = E] + E [q(S2, S1, A,X)(Y − h(S3, S2, A,X)) | A = a,G = O]

=E [h(S3, S2, A,X) | A = a,G = E]

+ E [q(S2, S1, A,X)E [Y − h(S3, S2, A,X) | S2, S1, A,X,G = O] | A = a,G = O]

=E [h(S3, S2, A,X) | A = a,G = E]

=µ(a),

where the second equation follows from Equation (9) and the third equation follows from Theorem 1.
If conditions in Theorem 2 hold and q = q0 satisfies Equation (12) or Equation (13), then

E [h(S3, S2, A,X) | A = a,G = E] + E [q(S2, S1, A,X)(Y − h(S3, S2, A,X)) | A = a,G = O]

=E [q(S2, S1, A,X)Y | A = a,G = O]

− E
[
h(S3, S2, A,X)E

[
q(S2, S1, A,X)− p(S3, S2, X | A,G = E)

p(S3, S2, X | A,G = O)
| S3, S2, A,X,G = O

]
| A = a,G = O

]
=E [q(S2, S1, A,X)Y | A = a,G = O]

=µ(a),

where the second equation follows from Equation (12) and the third equation follows from Theo-
rem 2.

G.5 Proofs for Section 5

Proof for Theorem 4. We first prove statement (2). We define

µ̃SEL(a) =
1

K

K∑
k=1

 1

n
(a)
O,k

∑
i∈DO,k

I [Ai = a] q̃(S2,i, S1,i, Ai, Xi)Yi

 .
Since we assume q̃ = q0, as n→∞, it follows from Law of Large Number and Theorem 2 that

µ̃SEL(a)→ E [q0(S2, S1, A,X)Y | A = a,G = O] = µ(a).

Now we only need to show that µ̂SEL(a) − µ̃SEL(a) = op(1), as this would imply that µ̂SEL(a) =
µ(a) + op(1), so that τ̂SEL is a consistent estimator for τ . To prove this, note that

µ̂SEL(a)− µ̃SEL(a) =
1

K

K∑
k=1

nO,k

n
(a)
O,k

∆SEL,k.

where

∆SEL,k =
1

nO,k

∑
i∈DO,k

I [Ai = a] (q̂k(S2,i, S1,i, Ai, Xi)− q0(S2,i, S1,i, Ai, Xi))Yi.
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Then by Cauchy-Schwartz inequality, for any k ∈ {1, . . . ,K}, we have

Var(∆SEL,k | DO,−k) =
1

nO,k
Var(I [A = a] (q̂k(S2, S1, A,X)− q0(S2, S1, A,X))Y | DO,−k)

≤ 1

nO,k
E
[
(I [A = a] (q̂k(S2, S1, A,X)− q0(S2, S1, A,X))Y )2 | DO,−k

]
≲

1

nO,k
∥q̂k − q0∥2L2(P) ≤

ρ2q,n
nO,k

.

By Markov inequality, we then have that

|∆SEL,k| = E [|∆SEL,k| | DO,−k] +Op

(
ρq,n√
nO,k

)
.

Here

E [|∆SEL,k| | DO,−k] ≲ ∥q̂k − q0∥L2(P) = ρq,n.

Therefore

µ̂SEL(a)− µ̃SEL(a) =
1

K

K∑
k=1

nO,k

n
(a)
O,k

∆SEL,k =
1

K

K∑
k=1

1

P (A = a | G = O)
Op

(
ρq,n +

ρq,n√
nO,k

)
= op(1).

Similarly, we can prove that µ̂OTC(a) = µ(a) + op(1) so that τ̂OTC is a consistent estimator for
τ , i.e., statement (1) is true.

Finally, we can similarly prove that µ̂DR(a)− µ̃DR(a) = op(1), where

µ̃DR(a) =
1

K

K∑
k=1

 1

n
(a)
E

∑
i∈DE

I [Ai = a] h̃(S3,i, S2,i, Ai, Xi)


+

1

K

K∑
k=1

 1

n
(a)
O,k

∑
i∈DO,k

I [Ai = a] q̃(S2,i, S1,i, Ai, Xi)
(
Yi − h̃(S3,i, S2,i, Ai, Xi)

) .
By Law of Large Number, the limit of µ̃DR(a) is

E
[
h̃(S3, S2, A,X) | A = a,G = E

]
+ E

[
q̃(S2, S1, A,X)

(
Y − h̃(S3, S2, A,X)

)
| A = a,G = O

]
.

According to Theorem 3, this is equal to µ(a) if either q̃ = q0 or h̃ = h0. Thus if either q̃ = q0 or
h̃ = h0, µ̂DR(a) − µ(a) = op(1) so that τ̂DR is a consistent estimator for τ . This proves statement
(3).

Proof for Theorem 5. By simple algebra, we can show that

µ̂DR(a)− µ̃DR(a) =
1

K

K∑
k=1

nO,k

n
(a)
O,k

∆O
DR,k +

nE

n
(a)
E

∆E
DR,k

=
1

K

K∑
k=1

1

P (A = a | G = O) + op(1)
∆O

DR,k +
1

P (A = a | G = E) + op(1)
∆E

DR,k
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where

∆O
DR,k =

1

nO,k

∑
i∈DO,k

[
I [Ai = a] q̂k(S2,i, S1,i, Ai, Xi)

(
Yi − ĥk(S3,i, S2,i, Ai, Xi)

)
−I [Ai = a] q0(S2,i, S1,i, Ai, Xi)(Yi − h0(S3,i, S2,i, Ai, Xi))

]
,

and

∆E
DR,k =

1

nE

∑
i∈DE

I [Ai = a]
(
ĥk(S3,i, S2,i, Ai, Xi)− h0(S3,i, S2,i, Ai, Xi)

)
.

By following the proof for Theorem 4, we can show that

∆O
DR,k = E

[
∆O

DR,k | DO,−k

]
+Op

(
max{ρq,n, ρh,n}√

nO,k

)
= E

[
∆O

DR,k | DO,−k

]
+ op

(
n−1/2

)
and

∆E
DR,k = E

[
∆E

DR,k | DO,−k

]
+Op

(
ρh,n√
nE

)
= E

[
∆E

DR,k | DO,−k

]
+ op

(
n−1/2

)
.

Moreover, we have∣∣∣∣ 1

P (A = a | G = O)
E
[
∆O

DR,k | DO,−k

]
+

1

P (A = a | G = E)
E
[
∆E

DR,k | DO,−k

]∣∣∣∣
=

∣∣∣∣E [
ĥk(S3, S2, A,X)− h0(S3, S2, A,X) | A = a,G = E,DO,−k

]
+E

[
q̂k(S2, S1, A,X)

(
Y − ĥk(S3, S2, A,X)

)
| A = a,G = O,DO,−k

]
−E [q0(S2, S1, A,X)(Y − h0(S3, S2, A,X)) | A = a,G = O,DO,−k]

∣∣∣∣
= |Rk,1 +Rk,2 +Rk,3| . (31)

Here

Rk,1 = E
[
q0(S2, S1, A,X)

(
ĥk(S3, S2, A,X)− h0(S3, S2, A,X)

)
| A = a,G = O,DO,−k

]
Rk,2 = E

[
q̂k(S2, S1, A,X)

(
h0(S3, S2, A,X)− ĥk(S3, S2, A,X)

)
| A = a,G = O,DO,−k

]
Rk,3 = 0.

Thus

Equation (31) = |Rk,1 +Rk,2|

=
∣∣∣E [

(q0 − q̂k)(ĥk − h0) | A = a,G = O,DO,−k

]∣∣∣
=

∣∣∣∣E [
I [A = a]

P (A = a | G = O)
(q0 − q̂k)(ĥk − h0) | G = O,DO,−k

]∣∣∣∣
It follows that

Equation (31) =

∣∣∣∣E [
I [A = a]

P (A = a | G = O)
E [q0 − q̂k | S3, S2, A,X,G = O] (ĥk − h0) | DO,−k

]∣∣∣∣
≤ ∥P ⋆(q̂k − q0)∥L2(P)∥ĥk − h0∥L2(P),
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and

Equation (31) =

∣∣∣∣E [
I [A = a]

P (A = a | G = O)
(q0 − q̂k)E

[
ĥk − h0 | S2, S1, A,X,G = O

]
| DO,−k

]∣∣∣∣
≤ ∥q0 − q̂k∥L2(P)∥P (ĥk − h0)∥L2(P).

This means that

Equation (31) ≤ min
{
∥P ⋆(q̂k − q0)∥L2(P)∥ĥk − h0∥L2(P), ∥q0 − q̂k∥L2(P)∥P (ĥk − h0)∥L2(P)

}
= op

(
n−1/2

)
.

Therefore, we have µ̂DR(a)− µ̃DR(a) = op
(
n−1/2

)
.

Furthermore,

µ̃DR(a)− µ(a)

=
1

K

K∑
k=1

 1

n
(a)
E

∑
i∈DE

I [Ai = a] (h0(S3,i, S2,i, Ai, Xi)− µ(a))


+

1

K

K∑
k=1

 1

n
(a)
O,k

∑
i∈DO,k

I [Ai = a] q0(S2,i, S1,i, Ai, Xi)(Yi − h0(S3,i, S2,i, Ai, Xi))


=

1

P (A = a | G = E)nE

∑
i∈DE

I [Ai = a] (h0(S3,i, S2,i, Ai, Xi)− µ(a))

+
1

P (A = a | G = O)nO

∑
i∈DO

I [Ai = a] q0(S2,i, S1,i, Ai, Xi)(Yi − h0(S3,i, S2,i, Ai, Xi)) + op

(
n−1/2

)
Combine the results above, we have

τ̂DR − τ =
1

nE

∑
i∈DE

[
Ai − P (Ai = 1 | Gi = E)

P (Ai = 1 | Gi = E) (1− P (Ai = 1 | Gi = E))
(h0(S3,i, S2,i, Ai, Xi)− µ(Ai))

]
+

1

nO

∑
i∈DO

[
Ai − P (Ai = 1 | Gi = O)

P (Ai = 1 | Gi = O)
q0(S2,i, S1,i, Ai, Xi)(Yi − h0(S3,i, S2,i, Ai, Xi))

]
+ op

(
n−1/2

)
.

Then the asserted conclusion follows from Central Limit Theorem.

Proof for Theorem 6. We only need to prove that σ̂2 is a consistent estimator for σ2, since then we
can apply Slutsky’s theorem to show that as n→∞,

√
n(τ̂DR − τ)

σ̂
⇝ N (0, 1).

This in turn implies the desired asymptotic coverage conclusion.
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To prove the consistency of σ̂2, we first consider the following (infeasible) estimator:

σ̃2 =
n

nEK

K∑
k=1

 1

nE

∑
i∈DE

[
Ai − π̂E
π̂E

(h0(S3,i, S2,i, Ai, Xi)− µ̂DR(Ai))

]2
+

n

nOK

K∑
k=1

 1

n
(a)
O,k

∑
i∈DO,k

[
Ai − π̂O
π̂O

q0(S2,i, S1,i, Ai, Xi)(Yi − h0(S3,i, S2,i, Ai, Xi))

]2
=

n

nE

 1

nE

∑
i∈DE

[
Ai − π̂E
π̂E

(h0(S3,i, S2,i, Ai, Xi)− µ̂DR(Ai))

]2
+

n

nO

 1

nO

∑
i∈DO

[
Ai − π̂O
π̂O

q0(S2,i, S1,i, Ai, Xi)(Yi − h0(S3,i, S2,i, Ai, Xi))

]2 .

Since n/nE → (1 + λ)/λ, n/nO → 1 + λ, π̂E → P (A = 1 | G = E), and π̂O → P (A = 1 | G = O),
we can apply Law of Large Number and Slutsky’s theorem to show that σ̃2 is a consistent estimator
for σ2. Therefore, as long as we can prove that σ̂2− σ̃2 → 0 as n→∞, we have σ̂2 → σ2 as n→∞,
which finishes our proof.

To prove σ̂2 − σ̃2 → 0, we define that

ψ1,i(h) =
Ai − π̂E
π̂E

(h(S3,i, S2,i, Ai, Xi)− µ̂DR(Ai)),

ψ2,i(h, q) =
Ai − π̂O
π̂O

q(S2,i, S1,i, Ai, Xi)(Yi − h(S3,i, S2,i, Ai, Xi)).

It follows that

∣∣σ̂2 − σ̃2∣∣ = n

nEK

K∑
k=1

∣∣∣∣∣∣ 1

nE

∑
i∈DE

[
ψ2
1,i(ĥk)− ψ2

1,i(h0)
]∣∣∣∣∣∣︸ ︷︷ ︸

∆1,k

+
n

nOK

K∑
k=1

∣∣∣∣∣∣ 1

n
(a)
O,k

∑
i∈DO,k

[
ψ2
2,i(ĥk, q̂k)− ψ2

2,i(h0, q0)
]∣∣∣∣∣∣︸ ︷︷ ︸

∆2,k

.

We now analyze ∆1,k:

∆1,k ≤

∣∣∣∣∣∣ 1

nE

∑
i∈DE

(
ψ1,i(ĥk)− ψ1,i(h0)

)(
2ψ1,i(h0) + ψ1,i(ĥk)− ψ1,i(h0)

)∣∣∣∣∣∣
≤

 1

nE

∑
i∈DE

(
ψ1,i(ĥk)− ψ1,i(h0)

)2

1/2

 1

nE

∑
i∈DE

(
ψ1,i(ĥk)− ψ1,i(h0)

)2

1/2

+ 2

 1

nE

∑
i∈DE

ψ2
1,i(h0)

1/2
 .

Moreover, since P (A = 1 | G = E) is strictly positive according to Assumption 2, we have that for
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large enough n, π̂E ≥ P (A = 1 | G = E) /2 > 0 with high probability. It follows that

1

nE

∑
i∈DE

(
ψ1,i(ĥk)− ψ1,i(h0)

)2
≲

1

nE

∑
i∈DE

(
ĥk(S3,i, S2,i, Ai, Xi)− h0(S3,i, S2,i, Ai, Xi)

)2

= ∥ĥk − h0∥L2(P) + oP(1) = OP(ρh,n) + oP(1) = oP(1).

It follows that ∆1,k = oP(1). Similarly, we can show that ∆2,k = oP(1). These together ensure that
as n→∞,

σ̂2 − σ̃2 → 0.

Proof for theorem 7. We consider a semiparametric model Msp that places no restrictions on the
data distribution except the existence of a bridge function h0 in Assumption 6. Consider a regular
parametric submodel indexed by a parameter t: Pt = {pt(y, s, a, x, g) : t ∈ R} where p0(y, s, a, x, g)
equals the true density p(y, s, a, x, g). The associated score function is denoted as SC(y, s, a, x, g) =
∂t log pt(y, s, a, x, g)|t=0. The expectation w.r.t the distribution pt(y, s, a, x, g) is denoted by Et.

By following the proof for Theorem 11 in Kallus et al. [2021], under the condition that bridge
functions h0, q0 uniquely exist and the linear operator T is bijective, the tangent space corresponding
toMsp is given by

S =

{
SC(Y, S,A,X,G) = SC(S2, S1, A,X,G) + SC(Y, S3 | S2, S1, A,X,G) : (32)

SC(S2, S1, A,X,G) ∈ L2(S2, S1, A,X,G), SC(Y, S3 | S2, S1, A,X,G) ∈ L2(Y, S3 | S2, S1, A,X,G),
E [SC(S2, S1, A,X,G)] = 0,E [SC(Y, S3 | S2, S1, A,X,G) | S2, S1, A,X,G] = 0,

E [(Y − h0(S3, S2, A,X)SC(Y, S3 | S2, S1, A,X,G)) | S2, S1, A,X,G = O] ∈ Range(T )

}
.

We now analyze the path differentiability of the counterfactual mean parameter µt(a) under a
submodel distribution with parameter value t. According to Theorem 1, we have

µt(a) = Et [ht(S3, S2, A,X) | A = a,G = E] ,

where ht(S3, S2, A,X) is the corresponding outcome bridge function defined by

Et [Y − ht(S3, S2, A,X) | S2, S1, A,X,G = O] = 0.

Note that we have

∂

∂t
µt(a)|t=0 =

∂

∂t
Et [ht(S3, S2, A,X) | A = a,G = E] |t=0

= E [h0(S3, S2, A,X)SC(S3, S2, X | A,G) | A = a,G = E] (33)

+
∂

∂t
E [ht(S3, S2, A,X) | A = a,G = E] |t=0. (34)

We first analyze the term in Equation (33).

E [h0(S3, S2, A,X)SC(S3, S2, X | A,G) | A = a,G = E] (35)

=E [(h0(S3, S2, A,X)− µ(a))SC(S3, S2, X | A,G) | A = a,G = E]

=E [(h0(S3, S2, A,X)− µ(a))SC(S3, S2, A,X,G) | A = a,G = E]

=E [(h0(S3, S2, A,X)− µ(a))SC(Y, S3, S2, S1, A,X,G) | A = a,G = E]

=E
[
I [A = a,G = E]

P (A = a,G = E)
(h0(S3, S2, A,X)− µ(a))SC(Y, S3, S2, S1, A,X,G)

]
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where the second equation holds because

E [(h0(S3, S2, A,X)− µ(a))SC(A,G) | A = a,G = E]

=E [(h0(S3, S2, A,X)− µ(a)) | A = a,G = E] SC(A = a,G = E) = 0,

and the third equation holds because

E [(h0(S3, S2, A,X)− µ(a))SC(Y, S1 | S3, S2, A,X,G) | A = a,G = E]

=E [(h0(S3, S2, A,X)− µ(a))E [SC(Y, S1 | S3, S2, A,X,G) | S3, S2, A,X,G] | A = a,G = E] = 0.

Next we analyze the term in Equation (34).

∂

∂t
E [ht(S3, S2, A,X) | A = a,G = E] |t=0

=
∂

∂t
E
[
p(S3, S2, X | A,G = E)

p(S3, S2, X | A,G = O)
ht(S3, S2, A,X) | A = a,G = O

]
|t=0

=
∂

∂t
E [q0(S2, S1, A,X)ht(S3, S2, A,X) | A = a,G = O] |t=0

= E
[
q0(S2, S1, A,X)

∂

∂t
E [ht(S3, S2, A,X) | S2, S1, A,X,G = O] |t=0 | A = a,G = O

]
,

where the second equation holds because of Equation (12).
Furthermore, by taking the derivative of the left hand side w.r.t t at t = 0, we have

∂

∂t
E [ht(S3, S2, A,X) | S2, S1, A,X,G = O] |t=0

=E [(Y − h0(S3, S2, A,X))SC(Y, S3 | S2, S1, A,X,G) | S2, S1, A,X,G = O] = 0. (36)

It follows that

∂

∂t
E [ht(S3, S2, A,X) | A = a,G = E] |t=0 (37)

= E [q0(S2, S1, A,X)(Y − h0(S3, S2, A,X))SC(Y, S3 | S2, S1, A,X,G) | A = a,G = O]

= E [q0(S2, S1, A,X)(Y − h0(S3, S2, A,X))SC(Y, S3, S2, S1, A,X,G) | A = a,G = O]

= E
[
I [A = a,G = O]

P (A = a,G = O)
q0(S2, S1, A,X)(Y − h0(S3, S2, A,X))SC(Y, S3, S2, S1, A,X,G)

]
,

where the second equation holds because

E [q0(S2, S1, A,X)(Y − h0(S3, S2, A,X))SC(S2, S1, A,X,G) | A = a,G = O]

=E
[
q0(S2, S1, A,X)E [Y − h0(S3, S2, A,X) | S2, S1, A,X,G = O]

× SC(S2, S1, A,X,G = O) | A = a,G = O
]
= 0.

Combining Equations (35) and (37), we have

∂

∂t
µt(a)|t=0 = E [ψa(Y, S3, S2, S1, A,X,G)SC(Y, S3, S2, S1, A,X,G)] ,

where

ψa(Y, S3, S2, S1, A,X,G) =
I [A = a,G = E]

P (A = a,G = E)
(h0(S3, S2, A,X)− µ(a))

+
I [A = a,G = O]

P (A = a,G = O)
q0(S2, S1, A,X)(Y − h0(S3, S2, A,X)).
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Therefore,

∂

∂t
τt|t=0 =

∂

∂t
µt(1)|t=0 −

∂

∂t
µt(0)|t=0

= E [ψ(Y, S3, S2, S1, A,X,G)SC(Y, S3, S2, S1, A,X,G)] ,

where

ψ(Y, S3, S2, S1, A,X,G)

=ψ1(Y, S3, S2, S1, A,X,G)− ψ0(Y, S3, S2, S1, A,X,G)− τ

=
I [G = E]

P (G = E)

A− P (A = 1 | G = E)

P (A = 1 | G = E)
(h0(S3, S2, A,X)− µ(A))

+
I [G = O]

P (G = O)

A− P (A = 1 | G = O)

P (A = 1 | G = O)
q0(S2, S1, A,X)(Y − h0(S3, S2, A,X))− τ.

We can easily decompose ψ(Y, S3, S2, S1, A,X,G) into two terms:

ψ(Y, S3, S2, S1, A,X,G) = E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G]− τ
+ ψ(Y, S3, S2, S1, A,X,G)− E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G] ,

where

E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G]− τ ∈ L2(S2, S1, A,X,G)

E [E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G]− τ ] = 0

ψ(Y, S3, S2, S1, A,X,G)− E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G] ∈ L2(Y, S3 | S2, S1, A,X,G)
E [ψ(Y, S3, S2, S1, A,X,G)− E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G] | S2, S1, A,X,G] = 0.

Moreover, since T is surjective, its range space Range(T ) is the whole L2(S2, S1, A,X) space so we
automatically have

E
[
(ψ(Y, S3, S2, S1, A,X,G)− E [ψ(Y, S3, S2, S1, A,X,G) | S2, S1, A,X,G])

× (Y − h0(S3, S2, A,X)) | S2, S1, A,X,G = O
]
∈ Range(T ).

This means that ψ(Y, S3, S2, S1, A,X,G) belongs to the tangent space S. Thus ψ(Y, S3, S2, S1, A,X,G)
is the efficient influence function for τ , and its variance, which is equal to σ2 in Theorem 7, is the
semiparametric efficiency lower bound for τ relative to the tangent space S in Equation (32).

G.6 Proofs for Section 6

Proof for Theorem 8. Before proving the theorem, we note that by Bayes rule, we can easily verify
that

P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
=

I [A = a]

P (A = a | X,G = O)

p(X | A = a,G = O)

p(X | A = a,G = E)
.

Assume that condition 1 holds so we have h = h0 satisfying Equation (9). In this case,
for any function q, we have

E
[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
q (S2, S1, A,X) (Y − h (S3, S2, A,X)) | G = O

]
=E

[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
q (S2, S1, A,X)

× E [Y − h0 (S3, S2, A,X) | S2, S1, A,X,G = O] | G = O

]
= 0, (38)
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where the last equation uses the conditional moment equation in Equation (9).
Moreover, for function h = h0,

E
[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

(
h(S3, S2, A,X)− h̄E(A,X)

)
| G = E

]
=E

[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)
E
[
h(S3, S2, a,X)− h̄E(a,X) | A = a,X,G = E

]
| G = E

]
= 0.

(39)

Finally, we only need to prove that

µ(a) = E [E [h0(S3, S2, A,X) | A = a,X = x,G = E] | G = O] (40)

According to lemma 1, we already know that any function h0(S3, S2, A,X) that satisfies Equa-
tion (9) must be a valid bridge function in the sense of Equation (7). Thus we only need to prove
Equation (40) for h0(S3, S2, A,X) that satisfies Equation (7). By following the proof in Theorem 1,
we can show that

E [h0(S3, S2, A,X) | A = a,X,G = E] = E [E [Y (a) | S2(a), U,X,G = O] | A = a,X,G = E] .

Therefore,

E [E [h0(S3, S2, A,X) | A = a,X,G = E] | G = O]

=E [E [E [Y (a) | S2(a), U,X,G = O] | X,G = E] | G = O]

=E [E [E [Y (a) | S2(a), U,X,G = O] | X,G = O] | G = O]

=E [E [Y (a) | X,G = O] | G = O] = E [Y (a) | G = O] .

Here the first equation follows from the fact that A ⊥ (S(a), U) | X,G = E in Assumption 10, the
second equation follows from Equation (30) in Lemma 7, and the third equation follows from the
fact that G ⊥ (S(a), U) | X in Assumption 9.

Combining Equations (38) to (40) proves the conclusion.

Assume that condition 2 holds so we have q = q0 satisfying Equation (12) or Equa-
tion (13). We first prove that

µ(a) = E
[

I [A = a]

P (A = a | X,G = O)

p(X | A = a,G = O)

p(X | A = a,G = E)
q0 (S2, S1, A,X)Y | G = O

]
= E

[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
q (S2, S1, A,X)Y | G = O

]
.

(41)

To prove this, note that according to Lemma 2, any function q0(S2, S1, A,X) that satisfies Equa-
tion (12) or Equation (13) is a valid selection bridge function in the sense of Equation (11). Thus
we only need to prove Equation (41) for any q0 that satisfies Equation (11). We further note that
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the right hand side of Equation (41) is equal to the following:

E
[
E
[
p(X | A = a,G = O)

p(X | A = a,G = E)
q0 (S2, S1, A,X)Y | A = a,X,G = O

]
| G = O

]
=E

[
E
[
E
[
p(X | A = a,G = O)

p(X | A = a,G = E)
q0 (S2, S1, A,X) | S2, A = a, U,X,G = O]

× E [Y | S2, A = a, U,X,G = O] | A = a,X,G = O

]
| G = O

]
= E

[
E
[
p(S2, U | A,X,G = E)

p(S2, U | A,X,G = O)
E [Y (a) | S2(a), U,X,G = O] | A = a,X,G = O

]
| G = O

]
= E

[
E
[
E [Y (a) | S2(a), U,X,G = O] | A = a,X,G = E

]
| G = O

]
= E

[
E
[
E [Y (a) | S2(a), U,X,G = O] | X,G = E

]
| G = O

]
= E

[
E
[
E [Y (a) | S2(a), U,X,G = O] | X,G = O

]
| G = O

]
= E [Y (a) | G = O] = µ(a).

Here the first equation uses Y ⊥ S1 | S2, A, U,X,G = O which we prove in Lemma 6, the second
equation uses the fact that q0 satisfies Equation (11) and Y (a) ⊥ A | S2(a), U,X,G = O according
to Assumption 1, the fourth equation uses that S2(a) ⊥ A | X,G = E according to Assumption 10,
the fifth equation uses the fact that S2(a) ⊥ G | X according to Assumption 9.

Next, we can follow the proof above to show that for any h,

E
[

I [A = a]

P (A = a | X,G = O)

p(X | A = a,G = O)

p(X | A = a,G = E)
q0 (S2, S1, A,X)h (S3, S2, A,X) | G = O

]
=E [h(S3(a), S2(a), a,X) | G = O] (42)

And by change of measure, we can also verify that

E
[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
h(S3, S2, A,X) | G = E

]
=E [E [h(S3, S2, A,X) | A = a,X,G = E] | G = O] = E [h(S3(a), S2(a), a,X) | G = O] , (43)

and

E
[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
h̄E(A,X) | G = E

]
=E

[
E
[
h̄E(A,X) | A = a,X,G = E

]
| G = O

]
= E

[
h̄E(A,X) | G = O

]
These show that

0 =E [hE(a,X) | G = O]

+E
[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

(
h(S3, S2, A,X)− h̄E(A,X)

)
| G = E

]
−E

[
I [A = a]

P (A = a | X,G = O)

p(X | A = a,G = O)

p(X | A = a,G = E)
q0 (S2, S1, A,X)h (S3, S2, A,X) | G = O

]
. (44)

Combining Equations (41) and (44) leads to the conclusion.
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G.7 Proofs for Appendix

Proof for Proposition 1. First note that

p(S2, U,X | A = a,G = E)

p(S2, U,X | A = a,G = O)
=
p(U,X | A = a,G = E)

p(U,X | A = a,G = O)

=
P (A = a | U,X,G = E)

P (A = a | U,X,G = O)

P (A = a | G = O)

P (A = a | G = E)

=
P (A = a | G = O)

P (A = a | U,X,G = O)
,

where the first equation follows from Lemma 7, the second equation follows from Bayes rule, and
the third equation follows from the fact that P (A = a | U,X,G = E) = P (A = a | G = E) = 1

2 .
Therefore, we have

p(S2, U,X | A = a,G = E)

p(S2, U,X | A = a,G = O)
=

E
[[
1 + exp

(
(−1)a

(
κ⊤1 U + κ⊤2 X

))]−1
]

[
1 + exp

(
(−1)a

(
κ⊤1 U + κ⊤2 X

))]−1 . (45)

Second, (S1, S2) | A,U,X,G = O follows a joint Gaussian distribution whose conditional ex-
pectation is [

τ1A+ β1X + γ1U
(τ2 + α2τ1)A+ (β2 + α2β1)X + (γ2 + α2γ1)U

]
and conditional covariance matrix is[

σ21I1 σ21α
⊤
2

σ21α2 σ21α2α
⊤
2 + σ22I2

]
.

It follows that S1 | S2, A, U,X,G = O also has a Gaussian distribution function with conditional
expectation

λ1S2 + λ2A+ λ3X + λ4U

and conditional variance

Σ1|2 = σ21I1 − σ41α⊤
2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2.

where

λ1 = σ21α
⊤
2

(
σ21α2α

⊤
2 + σ22I2

)−1
,

λ2 =

(
I1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2

)
τ1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
τ2

λ3 =

(
I1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2

)
β1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
β2

λ4 =

(
I1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
α2

)
γ1 − σ21α⊤

2

(
σ21α2α

⊤
2 + σ22I2

)−1
γ2.

Third, for a = 1, we posit a selection bridge function of the following form:

q0(S2, S1, 1, X) = c1 exp
(
θ̃⊤2 S2 + θ̃⊤1 S1 + θ̃⊤0 X

)
+ c0.
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It follows that

E [q0(S2, S1, 1, X) | S2, A = 1, U,X,G = O]

=c1 exp
(
θ̃⊤2 S2 + θ̃⊤0 X

)
E
[
exp

(
θ̃⊤1 S1

)
| S2, A = 1, U,X,G = O

]
+ c0

=c1 exp
(
θ̃⊤2 S2 + θ̃⊤0 X

)
exp

(
θ̃⊤1 (λ1S2 + λ2A+ λ3X + λ4U) +

1

2
θ̃⊤1 Σ1|2θ̃1

)
+ c0

=c1 exp

(
1

2
θ̃⊤1 Σ1|2θ̃1

)
exp

((
θ̃⊤1 λ1 + θ̃⊤2

)
S2 + θ̃⊤1 λ2A+

(
θ̃⊤1 λ3 + θ̃⊤0

)
X + θ̃⊤1 λ4U

)
+ c0

Thus we only need the above to match Equation (45) for a = 1. This is possible once λ4 has full
column rank: then there exists θ̃1 such that θ̃⊤1 λ4 = κ⊤2 . Then we can choose θ̃1, θ̃0, c1, c0 accord-
ingly. Analogously, we can also show the existence of a selection bridge function q0(S2, S1, 0, X) of
the same form for a = 0.

Proof for Corollary 2. We first prove the conclusion for Equation (10) in Theorem 1. Following
the proof for Theorem 1, we have

E [h0(S3, S2, A,X) | A = a,G = E]

=E [E [Y (a) | S2(a), U,X,G = O] | G = E]

=E [E [Y (a) | S2(a), U,X,G = E] | G = E] = E [Y (a) | G = E] ,

where the second follows from the assumption that Y (a) ⊥ G | S(a), U,X.
Next, we prove the conclusion for Equation (14) in Theorem 2. Following the proof for Theo-

rem 2, we have

E [q0(S2, S1, A,X)Y | A = a,G = O]

=E [E [Y (a) | S2(a), U,X,G = O] | A = a,G = E]

=E [E [Y (a) | S2(a), U,X,G = E] | G = E]

=E [Y (a) | G = E] = µ(a),

where the second equation follows from the assumption that Y (a) ⊥ G | S(a), U,X.
Finally, according to the proof of Theorem 3, if conditions in Theorem 1 hold and h = h0

satisfies Equation (9), then

E [h(S3, S2, A,X) | A = a,G = E] + E [q(S2, S1, A,X)(Y − h(S3, S2, A,X)) | A = a,G = O]

=E [h(S3, S2, A,X) | A = a,G = E] .

If conditions in Theorem 2 hold and q = q0 satisfies Equation (12) or Equation (13), then

E [h(S3, S2, A,X) | A = a,G = E] + E [q(S2, S1, A,X)(Y − h(S3, S2, A,X)) | A = a,G = O]

=E [q(S2, S1, A,X)Y | A = a,G = O] .

Then the conclusion follows from our proof above.

Proof for Corollary 3. The proof for Corollary 3 straitforwardly follows from the proof for Theo-
rem 8 and Corollary 1 by replacing all Y with r(Y ).
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Proof for Lemma 3. We denote the map in Equation (23) as Φ(η). Then we need to prove that

Φ̇j(η
∗)[ηj − η∗j ] :=

∂

∂t
Φ(η∗1, . . . , η

∗
j + t(ηj − η∗j ), . . . , η∗7)|t=0 = 0, for any ηj and j ∈ {1, . . . , 7} .

First, we note that

Φ̇1(η
∗)[η1 − η∗1]

=
∑

a∈{0,1}

(−1)1−a

{
E
[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
(h− h0)(S3, S2, a,X) | G = E

]

−E
[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)
q0 (S2, S1, a,X) (h− h0)(S3, S2, a,X) | G = O

]}
=

∑
a∈{0,1}

(−1)1−a {E [(h− h0)(S3(a), S2(a), a,X) | G = O]− E [(h− h0)(S3(a), S2(a), a,X) | G = O]} = 0,

where the second equation follows from Equations (42) and (43) in the proof for Theorem 8.
Second, we have that

Φ̇2(η
∗)[η2 − η∗2] =

∑
a∈{0,1}

(−1)1−a

{
E
[
h̄E(a,X)− h̄0,E(a,X) | G = O

]
−E

[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

(
h̄E(a,X)− h̄E,0(a,X)

)
| G = E

]}
=

∑
a∈{0,1}

(−1)1−a {E [
h̄E(a,X)− h̄0,E(a,X) | G = O

]
− E

[
h̄E(a,X)− h̄0,E(a,X) | G = O

]}
= 0,

where the equation follows from the proof for Theorem 8.
Third, we have

Φ̇3(η
∗)[η3 − η∗3] =

∑
a∈{0,1}

(−1)1−aE
[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

× (q − q0)(S2, S1, a,X) (Y − h0 (S3, S2, A,X)) | G = O

]
=

∑
a∈{0,1}

(−1)1−aE
[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P (A = a | X,G = E)

× (q − q0)(S2, S1, a,X)E [Y − h0 (S3, S2, A,X) | S2, S1, A = a,X,G = O] | G = O

]
= 0.
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Fourth, we have

Φ̇4(η
∗)[η4 − η∗4]

=
∑

a∈{0,1}

(−1)1−a

{
E
[
P (G = E)P (G = O | X)

P (G = O)P (G = E | X)

× I [A = a]

P2(A = a | X,G = E)
(η∗4 − η4)E

[
h0(S3, S2, a,X)− h̄E,0(a,X) | A = a,X,G = O

]
| G = O

]
+ E

[
P (G = E | A = a)P (G = O | X)

P (G = O | A = a)P (G = E | X)

I [A = a]

P2(A = a | X,G = E)
(η∗4 − η4)

× q0 (S2, S1, a,X)E [Y − h0 (S3, S2, A,X) | S2, S1, A = a,X] | G = O

]
= 0.

Following this proof for Φ̇4(η
∗)[η4 − η∗4] = 0, we can similarly show that Φ̇j(η

∗)[ηj − η∗j ] = 0 for
j = 5, 6, 7.

Proof for Theorem 10. Given the asserted conditions, according to Theorem 3.1 in Chernozhukov
et al. [2019], we have

τ̂ − τ =
1

nO

∑
i∈DO

(ϕ1(Yi, Si, 1, Xi; η
∗)− ϕ1(Yi, Si, 0, Xi; η

∗)− τ) + (ϕ3(Yi, Si, 1, Xi; η
∗)− ϕ3(Yi, Si, 0, Xi; η

∗))

+
1

nE

∑
i∈DE

(ϕ2(Yi, Si, 1, Xi; η
∗)− ϕ2(Yi, Si, 0, Xi; η

∗)).

Then the asserted conclusion follows from central limit theorem.

Proof for corollary 4. We can first follow the proof for Theorem 1 to show that for any h0(S3, S2, A,X)
that satisfies Equation (7),

E [h0(S3, S2, A,X) | S1, A = a,X,G = E]

= E [E [Y (a) | S2(a), U,X,G = O] | S1, A = a,X,G = E] .

The rest of the proof is analogous to Corollary 1.

Proof for corollary 5. We can first follow the proof for Theorem 1 to show that for any h0(S3, S2, A,X)
that satisfies Equation (7),

E [h0(S3, S2, A,X) | S2, S1, A = a,X,G = E]

= E [E [Y (a) | S2(a), U,X,G = O] | S2, S1, A = a,X,G = E] .

The rest of the proof is analogous to Corollary 1.

Proof for Corollary 6. First, note that under Assumptions 15 and 16, we can follow the proofs for
Lemmas 5 and 6 to show that S3 ⊥ G | S2, A = a, U,X, and (Y, S3) ⊥ S1 | S2, A, U⋄, X,G = O.

Second, following the proof for Lemma 1, we can show that for any function h0 that satisfies
Equation (9), it must also satisfy

E [Y | S2, A, U⋄, X,G = O] = E [h0(S3, S2, A,X) | S2, A, U⋄, X,G = O] . (46)

Finally, we can follow the proof for Corollary 1 to show that for any function h0 that satisfies
Equation (46), Equation (20) in Corollary 1 holds. This concludes the proof for Corollary 6.
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Proof of Proposition 3. We already have Z2 ⊥ G | Z1. Thus, we only need to verify G ⊥ Z1. Note
that

p(z1 | G = 1) =p(z1, A = 1 | G = 1) + p(z1, A = 0 | G = 1)

=
P (G = 1 | A = 1, Z1 = z1)P (A = 1) p(z1)

P (G = 1)

+
P (G = 1 | A = 0, Z1 = z1)P (A = 0) p(z1)

P (G = 1)

=p(z1)
C

P (G = 1)
∝ p(z1),

which proves the desired result.

Proof of Theorem 11. From the definition of external validity bridge function, we have

p(U | S2, X,A = a,G = O)

p(U | S2, X,A = a,G = E)
= E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E] · p(S2, X | A = a,G = E)

p(S2, X | A = a,G = O)
.

Then

p(U | S2, X,A = a,G = O)

= E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E] · p(S2, X | A = a,G = E)

p(S2, X | A = a,G = O)
· p(U | S2, X,A = a,G = E)

= E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E] · p(S2, X | G = E)

p(S2, X | A = a,G = O)
· p(U | S2, X,G = E),

where for the second equality we use (S2, X, U) ⊥ A | G = E. Then

p(U | S2, X,G = O)

=
∑
a

p(U | A = a, S2, X,G = O)P (A = a | S2, X,G = O)

=
∑
a

P (A = a | S2, X,G = O)E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E]

· p(S2, X | G = E)

p(S2, X | A = a,G = O)
· p(U | S2, X,G = E)

=
∑
a

E[q̃(S2, X,A, Z) | S2, X, U,A = a,G = E]P (A = a | G = O) · p(S2, X | G = E)

p(S2, X | G = O)
· p(U | S2, X,G = E)

(47)

= E
[
P (A | G = O)

P (A | G = E)
q̃(S1, S2, X,A) | X,U,G = E

]
· p(S2, X | G = E)

p(S2, X | G = O)
· p(U | S2, X,G = E), (48)

where to get (47) we use that

P (A = a | S2, X,G = O)

p(S2, X | A = a,G = O)
=

P (A = a | G = O)

p(S2, X | G = O)
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and for the last equality we use again that A ⊥ (S2, U,X) | G = E so that∑
a

E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E]P (A = a | G = O)

=
∑
a

E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E]
P (A = a | G = O)

P (A = a | G = E)
P (A = a | G = E)

=
∑
a

E[q̃(S1, S2, X,A) | S2, X, U,A = a,G = E]
P (A = a | G = O)

P (A = a | G = E)
P (A = a | S2, X, U,G = E)

= E
[
P (A | G = O)

P (A | G = E)
q̃(S1, S2, X,A) | S2, X, U,G = E

]
.

From above, we have that

E[Y (a) | S2, X,G = O] = E[E[Y (a) | S2, U,X,G = O] | S2, X,G = O]

= E[E[Y (a) | S2, U,X,G = E] | S2, X,G = O]

= E[E[h(S3, S2, X,A) | A = a, S2, U,X,G = E] | S2, X,G = O]

= E
[
E[h(S3, S2, X,A) | A = a, S2, U,X,G = E]

p(U | S2, X,G = O)

p(U | S2, X,G = E)
| S2, X,G = E

]
Where for the second equality we use that G ⊥ Y (a) | S2, U,X Then from (48), we further have

E[Y (a) | S2, X,G = O] =

E
[
E[h(S3, S2, X,A) | U, S2, X,G = E,A = a]E

[
p(A | G = O)

p(A | G = E)
q̃(S1, S2, X,A) | S2, X, U,G = E

]
| S2, X,G = E

]
· p(S2, X | G = E)

p(S2, X | G = O)
.

From here, and that for any function f(S1, S2, X,A),

E [E[h(S3, S2, X,A) | U, S2, X,G = E,A = a]E [f(S1, S2, X,A) | S2, X, U,G = E] | S2, X,G = E]

= E

[
E[h(S3, S2, X,A) | U, S2, X,G = E,A = a]

· E

[∑
a′

f(S1, S2, X, a
′)P

(
A = a′ | G = E

)
| S2, X, U,G = E

]
| S2, X,G = E

]

= E

[
E[h(S3, S2, X,A) | U, S2, X,G = E,A = a]

· E

[∑
a′

f(S1, S2, X, a
′)P

(
A = a′ | G = E

)
| S2, X, U,A = a,G = E

]
| S2, X,G = E,A = a

]

= E

[
h(S3, S2, X,A)

∑
a′

f(S1, S2, X, a
′)P

(
A = a′ | G = E

)
| S2, X,A = a,G = E

]
,

where for the second equality we use that S1 ⊥ A | S2, X, U,G = E and that U ⊥ A | S2, X,G = E.
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Finally, we have that

E[Y (a) | S2, X,G = O]

= E

[
h(S3, S2, X,A)

∑
a′

P (A = a′ | G = O)

P (A = a′ | G = E)
q̃
(
S1, S2, X, a

′)P (
A = a′ | G = E

)
| S2, X,A = a,G = E

]

· p(S2, X | G = E)

p(S2, X | G = O)

= E

[
h(S3, S2, X,A)

∑
a′

P
(
A = a′ | G = O

)
q̃
(
S1, S2, X, a

′) | S2, X,A = a,G = E

]
· p(S2, X | G = E)

p(S2, X | G = O)
,

which proves the desired result. It then follows that

µ(a) = E[E[Y (a) | S2, X,G = O] | G = O] = E
[
m(S2, a,X)

p(S2, X | G = E)

p(S2, X | G = O)
| G = O

]
= E[m(S2, a,X) | G = E].

Therefore, we have

τ = µ(1)− µ(0) = E[m(S2, 1, X)−m(S2, 0, X) | G = E].

Proof for Theorem 9. We first define the following stochastic processes:

V(a) =
{
pS3(a)(s3 | S2(a), S1(a), A,X,G = O) : s3 ∈ S3

}
,

Ṽ(a) =
{
pS3(a)(s3 | S2(a), S1(a), A = a,X,G = O) : s3 ∈ S3

}
,

W(a) = {p(u | S2(a), S1(a), A,X,G = O) : u ∈ U} ,
W̃(a) = {p(u | S2(a), S1(a), A = a,X,G = O) : u ∈ U} .

To prove the desired conclusion, we only need to prove that

E [r(Y (a)) | X,G = O] = E [E [r(Y ) | V, S2, A,X,G = O] | A = a,X,G = E] . (49)

Then the conclusion follows from the iterated law of conditional expectation. We will prove Equa-
tion (49) above by showing that

E [E [r(Y ) | V, S2, A,X,G = O] | A = a,X,G = E]

=E [E [r(Y (a)) | V(a), S2(a), X,G = O] | A = a,X,G = E] . (50)

Then Equation (49) follows from the fact that

E [E [r(Y (a)) | V(a), S2(a), X,G = O] | A = a,X,G = E]

=E
[
E
[
r(Y (a)) | Ṽ(a), S2(a), X,G = O

]
| A = a,X,G = E

]
=E

[
E
[
r(Y (a)) | Ṽ(a), S2(a), X,G = O

]
| X,G = E

]
=E

[
E
[
r(Y (a)) | Ṽ(a), S2(a), X,G = O

]
| X,G = O

]
=E [r(Y (a)) | X,G = O] ,
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where the second equality follows from the fact that (S2(a), S1(a)) ⊥ A | X,G = E and that Ṽ(a)
is determined by (S2(a), S1(a), X), the third equality follows from the fact that (S2(a), S1(a)) ⊥
G = O | X, and the last equality follows from the iterated law of conditional expectation.

Now we focus on proving Equation (50). For brevity, we omit X in all derivations so all
conditional expectations below should be understood as conditioning on X implicitly. We prove
Equation (50) in two steps. Step I: we first derive the relation between W̃(a) and Ṽ(a) and the
relation between W(a) and V(a), under the completeness condition in Assumption 5 condition 1.
By the law of total probability, we have

pS3(a)(s3 | S2(a) = s2, S1(a) = s1, A = a,G = O)

=

∫
pS3(a)(s3 | S2(a) = s2, S1(a) = s1, A = a, U = u,G = O)p(u | S2(a) = s2, S1(a) = s1, A = a,G = O) du

=

∫
pS3(a)(s3 | S2(a) = s2, U = u,G = O)p(u | S2(a) = s2, S1(a) = s1, A = a,G = O) du

=Φs2 [pU (· | S2(a) = s2, S1(a) = s1, A = a,G = O)] (s3),

where the second equality follows from the fact that S3(a) ⊥ (S1(a), A) | X,U,G = O, and Φs2 is
a mapping defined as follows: for any function g : U 7→ R,

ϕs2 [g(u)](s3) =

∫
pS3(a)(s3 | S2(a) = s2, U = u,G = O)g(u) du.

Now we show that this mapping is injective. To see this, consider any two functions g1 : U 7→ R
and g2 : U 7→ R such that Φs2 [g1](s3) = Φs2 [g2](s3) for all s3 such that p(s3 | S2 = s2, A = a,G =
O) > 0. Note that we have

ϕs2 [g(u)](s3) =

∫
pS3(a)(s3 | S2(a) = s2, U = u,G = O)g(u) du

=

∫
pS3(a)(s3 | S2(a) = s2, A = a, U = u,G = O)g(u) du

=

∫
pS3(s3 | S2 = s2, A = a, U = u,G = O)g(u) du

=

∫
p(u | S3 = s3, S2 = s2, A = a,G = O)

p(s3 | S2 = s2, A = a,G = O)

p(u | S2 = s2, A = a,G = O)
g(u) du.

According to the completeness condition in Assumption 5 condition 1, ϕs2 [g(u)](s3) = 0 for all s3
such that p(s3 | S2 = s2, A = a,G = O) > 0 if and only if g(u) = 0 for all u such that p(u | S2 =
s2, A = a,G = O) > 0. This in turn implies that Φs2 [g1](s3) − Φs2 [g2](s3) = Φs2 [g1 − g2](s3) = 0
for all s3 such that p(s3 | S2 = s2, A = a,G = O) > 0 if and only if g1(u) = g2(u) for all u such
that p(u | S2 = s2, A = a,G = O) > 0. Therefore, ϕs2 is an injective mapping. It follows that there
exists another mapping Ψs2 such that

p(u | s2(a) = s2, S1(a) = s1, A = a,G = O) = Ψs2 [pS3(a)(s3 | S2(a) = s2, S1(a) = s1, A = a,G = O)](u).

Therefore, we have W̃(a) = ΨS2(a)[Ṽ(a)].
By the same token, we also have

pS3(a)(s3 | S2(a) = s2, S1(a) = s1, A,G = O) = Φs2 [pU (· | S2(a) = s2, S1(a) = s1, A,G = O)] (s3).

We thus also have W(a) = ΨS2(a)[V(a)].

65



Step II: We next prove Equation (50). Note that

E [E [r(Y ) | V, S2, A,G = O] | A = a,G = E] = E [E [r(Y (a)) | V(a), S2(a), A = a,G = O] | A = a,G = E] .

By the iterated law of conditional expectation,

E [r(Y (a)) | V(a), S2(a), A = a,G = O]

=E [E [r(Y (a)) | V(a), S2(a), S1(a), A = a,G = O] | V(a), S2(a), A = a,G = O]

=E [E [r(Y (a)) | V(a), S2(a), S1(a), A,G = O] | V(a), S2(a), A = a,G = O]

=E [E [r(Y (a)) | S2(a), S1(a), A,G = O] | V(a), S2(a), A = a,G = O]

=E [E [r(Y (a)) | S2(a), S1(a), A = a,G = O] | V(a), S2(a), A = a,G = O]

=E [E [E [r(Y (a)) | S2(a), S1(a), A = a, U,G = O] | S2(a), S1(a), A = a,G = O] | V(a), S2(a), A = a,G = O]

=E [E [E [r(Y (a)) | S2(a), U,G = O] | S2(a), S1(a), A = a,G = O] | V(a), S2(a), A = a,G = O] ,

where the thid equality holds because V (a) is fully determined by S2(a), S1(a), A, and the last
equality holds because Y (a) ⊥ S1(a) | S2(a), U,X,G = O.

Here

E [E [r(Y (a)) | S2(a), U,G = O] | S2(a), S1(a), A = a,G = O]

=

∫
E [r(Y (a)) | S2(a), U = u,G = O] p(u | S2(a), S1(a), A = a,G = O) du

=

∫
E [r(Y (a)) | S2(a), U = u,G = O] [W̃(a)](u) du

=

∫
E [r(Y (a)) | S2(a), U = u,G = O] [ΨS2(a)[Ṽ(a)]](u) du

It then follows that

E [E [r(Y (a)) | V(a), S2(a), A = a,G = O] | A = a,G = E]

=E
[
E
[∫

E [r(Y (a)) | S2(a), U = u,G = O] [ΨS2(a)[Ṽ(a)]](u) du | V(a), S2(a), A = a,G = O

]
| A = a,G = E

]
=E

[
E
[∫

E [r(Y (a)) | S2(a), U = u,G = O] [ΨS2(a)[V(a)]](u) du | V(a), S2(a), A,G = O

]
| A = a,G = E

]
=E

[
E
[∫

E [r(Y (a)) | S2(a), U = u,G = O] [ΨS2(a)[V(a)]](u) du | V(a), S2(a), G = O

]
| A = a,G = E

]
.

where the last equality follows from the fact that conditionally on S2(a), the inner term within
E [· | V(a), S2(a), A = a,G = O] in the second equality above only depends on V (a).

Moreover, we have∫
E [r(Y (a)) | S2(a), U = u,G = O] [ΨS2(a)[V(a)]](u) du

=

∫
E [r(Y (a)) | S2(a), S1(a), A, U = u,G = O] [W(a)](u) du

=

∫
E [r(Y (a)) | S2(a), S1(a), A, U = u,G = O] p(u | S2(a), S1(a), A,G = O) du

=

∫
E [r(Y (a)) | V(a), S2(a), S1(a), A, U = u,G = O] p(u | V(a), S2(a), S1(a), A,G = O) du

=E [r(Y (a)) | V(a), S2(a), S1(a), G = O] ,
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where the first equality uses the fact that Y (a) ⊥ (S1(a), A) | S2(a), U,X,G = O, the third equality
uses the fact that V(a) is fully determined by S2(a), S1(a), A, and the last equality uses the iterated
law of conditional expectation.

This means that

E
[∫

E [r(Y (a)) | S2(a), U = u,G = O] [ΨS2(a)[V(a)]](u) du | V(a), S2(a), G = O

]
=E [E [r(Y (a)) | V(a), S2(a), S1(a), G = O] | V(a), S2(a), G = O]

=E [r(Y (a)) | V(a), S2(a), G = O] .

It follows that

E [E [r(Y ) | V, S2, A,G = O] | A = a,G = E] = E [E [r(Y (a)) | V(a), S2(a), G = O] | A = a,G = E] .

This finishes proving Equation (50) (with X being implicitly conditioned on everywhere).
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