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As a hybrid of artificial intelligence and quantum computing, quantum neural networks (QNNs) have gained
significant attention as a promising application on near-term, noisy intermediate-scale quantum (NISQ) devices.
Conventional QNNs are described by parametrized quantum circuits, which perform unitary operations and
measurements on quantum states. In this work, we propose a novel approach to enhance the expressivity of
QNNs by incorporating randomness into quantum circuits. Specifically, we introduce a random layer, which
contains single-qubit gates sampled from an trainable ensemble pooling. The prediction of QNN is then repre-
sented by an ensemble average over a classical function of measurement outcomes. We prove that our approach
can accurately approximate arbitrary target operators using Uhlmann’s theorem for majorization, which enables
observable learning. Our proposal is demonstrated with extensive numerical experiments, including observable
learning, Rényi entropy measurement, and image recognition. We find the expressivity of QNNs is enhanced by
introducing randomness for multiple learning tasks, which could have broad application in quantum machine
learning.

Introduction.– In recent years, significant breakthroughs
have been made in the field of artificial intelligence. Among
various machine learning algorithms, neural networks have
played a vital role, thanks to their universal expressivity for
deep architectures. As a quantum generalization of neural net-
works, quantum neural networks (QNNs) have been proposed
based on parameterized quantum circuits. QNNs use quantum
states instead of classical numbers as inputs[1–4]. However,
the evolution of the input quantum states is constrained to be
unitary, which limits the expressivity of QNNs. For physi-
cal observables, which are linear functions of the input quan-
tum states or density matrices, QNNs can achieve high accu-
racy only if the target operator shares the same eigenvalues
with the measurement operator. For a general situation, it re-
quires introducing auxiliary qubits, as proposed in [5]. To ex-
presse non-linear functions of the input density matrices, such
as purities, traditional approaches introduce multiple replicas,
which is unfavorable on near-term, noisy intermediate-scale
quantum (NISQ) devices with a limited number of logical
qubits. Previous studies have also reported moderate accuracy
for more general machine learning tasks, including image rec-
ognization [6–10].

In this work, we propose a universal scheme to overcome
the expressivity obstacle without the need for additional repli-
cas. Our main inspiration comes from the recent development
of the randomized measurement toolbox for quantum simula-
tors [11–35]. In all of these protocols, a measurement is per-
formed after a random unitary gate, and the desired property
is predicted through a classical computer after collecting suf-
ficient measurement outcomes. In particular, the random mea-
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û3

<latexit sha1_base64="r15g13MqVPXMXzlZ5m7Re7NprSU="></latexit>

û4
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E = {wi, Ûr,i}

FIG. 1. An illustration is provided for the proposed architecture of
randomized quantum neural networks. In this example, the circuit
contains two deterministic layers Û1(2) and one random layer Ûr

in between, with the final measurement performed on two qubits.
As demonstrated in this work, this architecture shows randomness-
enhanced expressivity for a variety of general learning tasks.

surement has been experimentally realized in [36–41]. These
developments unveil that randomness plays a central role in
extracting information from complex quantum systems effi-
ciently. From a machine learning perspective, this implies
that introducing random unitaries can enhance the expressiv-
ity of QNNs. This naturally leads to the concept of random-
ized quantum neural networks, where we collect measurement
outcomes from an ensemble of parametrized quantum circuits
to make final predictions. Analogous to the different types of
layers in classical neural networks, randomized QNNs con-
sist of deterministic layers and random layers. In determinis-
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tic layers, the quantum gates contain parameterized quantum
gates as in traditional QNNs, while in random layers, they are
sampled from trainable ensembles of single-qubit gates. This
is illustrated in FIG. 1. We demonstrate the high expressivity
of the proposed architecture using several different tasks, in-
cluding both linear and nonlinear functions of the input den-
sity matrix. Our results pave the way towards realizing the
universal expressivity ability for QNNs.

Architecture.– We begin with a detailed description of ran-
domized QNNs. To be concrete, we focus on the architecture
illustrated in FIG. 1 forNsys = 5 qubits, which comprises two
deterministic layers, namely Û1 and Û2, with a random single
qubit gate layer Ûr in between.

Each deterministic layer Ûld (ld = 1, 2) contains a number
of units V̂ l

ld
(θl

ld
) (l ∈ {1, 2, ..., Lld}) and each deterministic

layer is constructed as

Ûld = V̂
Lld

ld
(θ

Lld

ld
)...V̂ 2

i (θ
2
ld
)V̂ 1

ld
(θ1

ld
), (1)

where {θl
ld
} are the parameters of the deterministic layers. In

general, the arrangement of two-qubit gates in each determin-
istic layer allows for a large degree of freedom. In this work,
we focus on the standard brick wall architecture with spatial
locality. Each unit V̂ l

ld
contains Nsys − 1 two qubit gates and

each two qubit gate is a SU(4) matrix which can be param-
eterized as exp(

∑
j cj ĝj). Here ĝj is the generator of SU(4)

group and {θl
ld
} denotes parameters {c} of all two qubit gates

[42]. Nonetheless, alternative choices for each deterministic
layer have the potential to enhance the expressivity of QNNs
for a fixed number of gates [6].

For the sake of experimental convenience, the random layer
Ûr comprises a tensor product of single-qubit gates, denoted
as û1⊗ û2...⊗ ûNsys . These gates are sampled from an ensem-
ble

E = {(wi, Ûr,i = ûi1(α
1
i )⊗ ûi2(α

2
i )...⊗ ûiNsys

(α
Nsys
i ))}, (2)

where i = 1, 2, ..., Nr labels different elements and wi is the
corresponding weight with

∑
i wi = 1. Each single qubit gate

is parametrized by generators of SU(2) with 3 dimensional
real vector αq

i (q ∈ {1, 2, ..., Nsys}). Both {wi} and {αq
i } are

trainable parameters. It is also straightforward to introduce
multiple random layers into the full architecture of QNNs. Im-
portantly, it is worth noting the differences between our defini-
tion and typical random measurement protocols. Firstly, our
random layer can be added at any point in the quantum cir-
cuit, not necessarily before the final measurement. Secondly,
our definition of E allows for non-trivial correlations between
single-qubit gates on different sites, which is typically absent
in random measurement protocols. Both features are neces-
sary for achieving a high expressivity in QNNs.

We consider a dataset {(|ψm⟩, Tm)}, in which m ∈
{1, 2, ..., ND} labels different data and Tm is the target in-
formation for the corresponding state |ψm⟩. For each unitary
Ûr,i in the ensemble E , we perform projective measurements
in the computational basis for k ∼ O(1) qubits. The small

number of measured qubits would avoid the barren plateaus,
which can be caused by global measurements [43]. In FIG.
1, we set k = 2, and the measurement yields the probability
distribution given by:

pss
′

i,m = ⟨ψm|Û†
1 Û

†
r,iÛ

†
2 (P̂

2
s ⊗ P̂ 3

s′)Û2Ûr,iÛ1|ψm⟩, (3)

where the projection operator P̂ q
s =

1+sσ̂q
z

2 for s = ±1. Due
to the constraint

∑
ss′ p

ss′
i,m = 1, there are only 3 non-trivial

components of pss
′

i,m, denoted by the vector pi,m. We then
use a classical computer to apply a general function fβ(.),
parametrized by β, to the probability distribution pss

′
i,m, which

yields a single outcome denoted by Pi,m = fβ(pi,m). The
classical function can be described by elementary functions in
the simplest setting, but is more generally described by classi-
cal neural networks. We further average the outcome over the
ensemble E to obtain the final prediction for the input state
|ψm⟩ as:

Pm =

Nr∑

i=1

wiPi,m =

Nr∑

i=1

wifβ(pi,m). (4)

We use the mean square error (MSE) as the loss function
L = 1

ND

∑
m(Pm − Tm)2 with a data size of ND during

the training process. We apply the gradient descent algorithm
to optimize the parameters {θl

ld
, wi,α

q
i ,β} to minimize the

loss function L, and set the numerical criteria as L < 10−5

to characterize the accurate prediction. Our method to com-
pute gradients of parameters is explained in the Supplemen-
tary Material [42]. In the following sections, we focus on
demonstrating high expressivity for randomized QNNs. Our
examples range from simple physical tasks including observ-
able learning and Rényi entropy measurement, to standard
machine learning tasks such as image recognization.

Observable learning.– To show the high expressivity of
randomized QNNs, let us consider a simple scenario where
the target, Tm, is an expectation of a physical observable Ô
with Tm = ⟨ψm|Ô|ψm⟩. For simplicity, focusing on single-
qubit measurement with k = 1, we first investigate whether
the randomized QNNs as proposed as in FIG. 1 can approxi-
mate the target function Tm as accurate as possible for suffi-
ciently deep circuit structures with sufficiently large Nr. As
physical observables are linear in density matrices, a linear
function fβ(x) = β0 + β1x will be applied to the measure-
ment result. Explicitly, we introduce Ûtot,i for a random re-
alization i of the quantum circuit. As an example, we have
Ûtot,i = Û2Ûr,iÛ1. An accurate prediction of the target func-
tion requires that

Nr∑

i=1

wi Û
†
tot,i(β0σ̂

1
0 + β1σ̂

1
z)Ûtot,i = Ô, (5)

where σ̂0 is the identity operator and Pauli matrix σ̂z is the
single-qubit’s measurement operator.

For the case ofNr = 1 andw1 = 1, our setup reduces to the
traditional QNN without randomness. In this scenario, Eq.(5)
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FIG. 2. Predicting observables using QNN with a random layer. (a)
The logarithmic training mean square error is shown as a function of
the training epoch for observable learning with Nsys = 2. The solid
lines represent the averaged over the training process for 10 differ-
ent random target operators with independent runs, while the shaded
region represents the standard deviation. The dashed lines are the
validation loss with the dataset containing 200 samples. (b) The log-
arithmic mean square error of training dataset for Nsys ∈ {2, 3, 4, 5}
and Nr ∈ {1, 2, 3, 4}. The markers represents the average over 10
different random target operators with random initializations, and er-
ror bars are the standard deviation.

requires that (β0σ̂1
0 + β1σ̂

1
z) and Ô be related by a unitary

transformation. Since the unitary transformation preserves the
eigenvalues of the operator, the requirement cannot be satis-
fied for a general operator Ô. When Nr > 1, Eq.(5) can be
expressed as Φ(Σ̂) = Ô, where Σ̂ ≡ β1σ̂

1
z + β0σ̂

1
0 and Φ(X̂)

is a mixed-unitary channel [44]. For sufficiently complex cir-
cuit structures, we expect Φ to be generic. In comparison to
the Nr = 1 case, there is no constraint from unitarity. How-
ever, we still need to ask whether Eq.(5) can be satisfied for
an arbitrary operator Ô. In the following, we prove that the
answer to this question is affirmative:

Step 1. Mathematically, if there exists a mixed-unitary
channel Φ such that Y = Φ(X), we say that X majorizes
Y , denoted by Y ≺ X [45]. Thus, for a randomized QNNs
which can accurately predict any observable Ô, we need to
find values of β0 and β1 such that Ô ≺ Σ̂ for any Ô.

Step 2. According to Uhlmann’s theorem for majorization
[45, 46], Ô ≺ Σ̂ if and only if λÔ ≺ λΣ̂, where λX̂ is the list
of eigenvalues for the operator X̂ in descending order. Here
the majorization between two real vectors y ≺ x is defined
as (i)

∑q
j=1 xj ≥ ∑q

j=1 yj for arbitrary 1 ≤ q < D and

(ii)
∑D

j=1 xj =
∑D

j=1 yj . Here D is the dimension of the

vectors. Noting that condition (ii) takes into account the trace-
preserving property of mixed-unitary channels.

Step 3. We can always find β0 and β1 such that λÔ ≺ λΣ̂.
Assuming β1 > 0, the first or last D/2 components of λΣ̂

correspond to the values β0+β1 or β0−β1, respectively. The
constant term β0 can then be determined using condition (ii),
which gives β0 = D−1

∑D
j=1 λÔ,j . Moreover, condition (i)

can always be satisfied for sufficiently large β1. This proves
the existence of β0 and β1 such that Ô ≺ Σ̂.

Although randomized QNNs have the potential to express
arbitrary operators, it is difficult to determine an upper bound
or a required value for Nr in practical learning tasks. It is
unfavorable to have large Nr or a large number of random
layers, especially in NISQ devices. Therefore, we turn to nu-
merical simulations of the randomized QNNs, and investigate
practical requirements on Nr. Since the basis change can be
efficiently captured by the deterministic layer Û1, we focus
on observables Ô that are diagonal in the computational ba-
sis. For simplicity, we further set Û1 = Î and Û2 composed
by L2 units of a brick wall structure [42]. For each system
size Nsys, we test whether a random diagonal operator Ô can
be predicted accurately for different values of Nr by moni-
toring the training loss for a sufficiently large dataset. As an
example, we plot the logarithmic training mean square error
log10(MSE) as a function of the training epoch for Nsys = 2
in FIG. 2 (a). The curves are averaged over 10 operators with
random eigenvalues from the uniform distribution [−2.5, 2.5].
When we increase Nr from 1 to 3, there is a rapid decrease
in the training loss for large training epochs. The result shows
that Nr = 3 is sufficient for learning general operators for
Nsys = 2 where the loss L can be decreased to 10−14. We
further extend the system size Nsys to study how it affects the
number of required random gates. The results are shown in
FIG. 2 (b). Although we are limited to small system sizes
Nsys ∈ {2, 3, 4, 5}, the results clearly show weak dependence
of Nr on Nsys. The training results show that Nr = 3 already
gives highly accurate predictions for Nsys = 5.

Rényi entropy measurement.– We now consider targets that
are non-linear functions of density matrices. One example is
the Rényi entropy, which is also of experimental interest. To
compute the Rényi entropy for a subsystem A consisting of
the central Nsub qubits, we first calculate the reduced density
matrix ρ̂A of an input state |ψm⟩ by tracing out the degrees of
freedom of the complementary subsystem Ā. We then select
the target as

Tm = TrA[ρ̂nA], (6)

which is related to the n-th Rényi entropy through S
(n)
A =

− 1
n−1 ln(Tm). Since we are directly measuring a local prop-

erty of the input wavefunction, it is reasonable to fix Û1 and
Û2 to the identity matrix Î and focus on the random layer Ûr

with k = Nsub. This approach provides a minimum guaran-
teed expressivity of randomized QNNs. Because the target
Tm is proportional to ρn, we choose the function fβ(x) to be
a polynomial up to the n-th order. However, it is worth noting
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that lower order polynomials may also work in certain cases
[47]. We prepare a dataset with random states |ψm⟩, the de-
tailed description of which is provided in the Supplementary
Material [42]. The numerical results for n = 2, 3, Nsys = 5
and Nsub = 1, 2 are shown in FIG. 3. To achieve accurate
predictions, we need Nr = 3 for Nsub = 1 and Nr = 9 for
Nsub = 2. The blue lines in FIG. 3 demonstrate that the loss
L is able to reach a value of 10−5 and still keep decreasing,
indicating the ability to make accurate predictions. We have
also discussed the saturation of Nr for n = 2, Nsub = 2 and
the required number of Nr if we instead consider n = 3. The
results are shown in the Supplementary Material [42].

It is interesting to compare our results to the proposed ran-
dom measurement protocol for Rényi entropies. Our results
indicate that Nr scales as 3Nsub when measuring Rényi en-
tropies. In comparison, the previous protocol required each
single-qubit gate ûiq to be sampled from the circular unitary
ensemble [18, 40]. For n = 2, the circular unitary ensem-
ble can be replaced by unitary 2-designs, which are known to
be the Clifford group. Since the single-qubit Clifford group
contains 24 elements, the total number of unitary matrices
Ûr,i would naively scale as 24Nsub. However, in practice,
this can be significantly reduced because randomized mea-
surement protocols only require Ns snapshots sampled from
the full ensemble. The theoretical bound of Ns for measuring
general linear observables in a subsystem withNsub qubits us-
ing random Pauli measurements up to an error ϵ is given by
Ns ≳ 3Nsub/ϵ2 [18, 19]. Consequently, in this quantum neu-
ral network structure, the number of unitary matrices Ûr,i that
contribute is at most 3Nsub , as in our randomized QNNs.

Image recognition.– Finally, we turn our attention to im-
age recognition, a more practical machine learning task, in or-
der to demonstrate the enhanced expressivity of randomized
QNNs. In this case, we use Google’s ’Street View of House
Number (SVHN)’ dataset as an example [48]. Each image
in the dataset corresponds to an integer number. For demon-
stration purposes, we select two categories of images contain-
ing the numbers ’1’ and ’4’. Initially, we compress each im-
age into an 8 × 8 pixel format, resulting in a 64-dimensional
real vector, which can be equivalently represented as a 32-
dimensional complex vector. Subsequently, we encode the
image into the input wave function using Nsys = 5 qubits
[42]. Unlike previous tasks, the mapping between the in-
put and the output is highly complex and non-local, lack-
ing a simple understanding. Consequently, we allow both
Û1 and Û2 to be trainable. After measuring a single qubit,
we choose a 5th-order polynomial for the function fβ(x).
Since the image recognition is a two category classification
task, after obtaining the final ensemble average prediction
Pm, we apply a logistic-sigmoid function to restrict the pre-
diction in the region (0,1) with Gm = 1/(1 + exp(−Pm)).
And we use the cross-entropy as the loss function L =
1

ND

∑
m −Tm log(Gm) − (1 − Tm) log(1 − Gm) to optimize

the parameters in the randomized QNN. The accuracy F =
1

ND

∑
m |[sign(Gm−0.5)+1]/2−Tm| forNr = 1 andNr = 4
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FIG. 3. Predicting Rényi entropies using QNN with a random layer.
The logarithmic training mean square error is shown as a function of
the training epoch for purity with Nsys = 5 and (a) n = 2, Nsub = 1,
(b) n = 2, Nsub = 2, (c) n = 3, Nsub = 1 or (d) n = 3, Nsub = 2.
The results are averaged over the training process for 10 different
random initializations, and the shaded region represents the standard
deviation. The dashed lines are the validation loss with the dataset
containing 200 samples.

are shown in FIG. 4. For Nr = 1, the accuracy saturates at
approximately 0.8 after a large number of epochs, while the
averaged accuracy for the test dataset reaches 69.8%. The in-
troduction of a single random layer with Nr = 4 significantly
enhances the accuracy of the predictions. In this case, the
training dataset achieves an accuracy higher than 90%, and
the average accuracy for the test dataset is 82.29%. The uti-
lization of a non-trivial random layer with Nr = 4 demon-
strates a significant improvement in the prediction capabilities
of QNNs, indicating the enhanced expressivity of our random-
ized QNN architecture.

Outlook.– This work introduces the concept of random-
ized quantum neural networks, which include random layers
where quantum gates are selected from an ensemble of uni-
tary matrices. It is proven that these random layers provide
universal expressivity for general physical observables using
Uhlmann’s theorem for majorization. Numerical simulations
further show that this architecture achieves high expressivity
for non-linear functions of the density matrix, such as Rényi
entropies and image recognition, with small ensemble sizes
Nr. These results indicate that the proposed method has po-
tential for broad applications in NISQ devices. We remark
that adding a random layer to the QNNs causes an extra com-
putational cost proportional to Nr. Nonetheless, introducing
randomness into QNNs while maintaining the same compu-
tational cost still improves the learning performance signifi-
cantly [42]. We further highlight the differences between our
architecture and the proposal presented in a very recent pa-
per [49]. Their work also incorporates a series of parameter-
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FIG. 4. Image recognition by QNN with a random layer. The ac-
curacy is shown as a function of the training epoch for the image
recognition task. The results are averaged over the training process
for 10 different random initializations, and the shaded region repre-
sents the standard deviation.

ized quantum circuits, where the circuit consists of multiple
parametrized (controlled-) rotations that share the same pa-
rameter. In contrast, our architecture features only a few ran-
dom layers described by a tensor product of single-qubit gates,
making its training process more efficient.

While the focus of this work is on parameterized quan-
tum circuits with brick wall structures, it is straightforward
to combine this novel architecture with other proposals to fur-
ther improve expressivity or learning efficiency. For instance,
it is possible to add ancilla qubits and explore more sophisti-
cated architectures for the deterministic layers. Additionally,
it would be interesting to investigate the impact of random
layers on other quantum machine learning algorithms beyond
traditional quantum neural networks [50–55], such as quantu
autoencoders [50, 51].
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STRUCTURES OF DETERMINISTIC LAYERS

In this section, we’ll present the architecture of deterministic layers. The entire deterministic layer Û is composed of a number
of unites, i.e. Û = V̂ LV̂ l−1 · · · V̂ 1. Each unit V̂ a contains multiple two-qubit gates v̂ij where i, j represent the qubits indices.
Each two-qubit gate is parameterized as v̂ij = exp(

∑
w θ

w
ij ĝw) where {ĝk} are the generators of the SU(4) group. Fig.[1]

illustrates the brick wall architecture of one unit. The explicit form of this single-unit neural network is as follow:

V̂ = [σ̂1
0 ⊗ v̂23 ⊗ v̂45][v̂12 ⊗ v̂34 ⊗ σ̂5

0 ], (1)

where σ̂0 is the identity of the single qubit.

1
2
3
4
5

FIG. 1: The brick wall structure of 5-qubit system.

GRADIENT DECENT METHOD OF QNN’S PARAMETERS

In this section, we present the calculation details of the gradients of parameters in QNNs with the random layer. The QNN
architecture consists of three components: deterministic layers Û1 and Û2, a random layer E = {wi, Ûr,i} situated between
deterministic layers, and a classical function fβ. The final prediction for the input state |ψm⟩ is computed as follows:

Pm =

Nr∑

i=1

wiPi,m =

Nr∑

i=1

wifβ(pi,m). (2)

where {wi} represents the probabilities of the random unitary operators in the ensemble E , {β} are variational parameters in the
classical function, and pi,m denotes the measurements from the quantum circuit. In quantum machine learning tasks, the loss

ar
X

iv
:2

30
8.

04
74

0v
2 

 [
qu

an
t-

ph
] 

 1
5 

D
ec

 2
02

3



2

function L is a function of Pm, and the gradient with respect to {wi,β} can be easily obtained.

∂L
∂wi

=
∑

m

∂L
∂Pm

Pi,m (3)

∂L
∂β

=
∑

m

∂L
∂Pm

Nr∑

i

wi
∂fβ(pi,m)

∂β
(4)

Each element of measurements is given by psi,m = ⟨ψm|Û†
1 Û

†
r,iÛ

†
2M̂sÛ2Ûr,iÛ1|ψm⟩ where M̂s is a general measurement

operator. Ûr,i is parametrized by {αq
i } that

Ûr,i = ûi1(α
1
i )⊗ ûi2(α

2
i )...⊗ ûiNsys

(α
Nsys
i )

ûiq = exp(αq
i · σ), (5)

where αq
i is a three-dimensional real vector and σ is a three-dimensional vector composed of the generators of the SU(2) group.

The gradient of αq
i can be written as:

∂L
∂αq

i

=
∑

m

∂L
∂Pm

Nr∑

i

wi

∑

s

∂fβ(pi,m)

∂psi,m

∂psi,m
∂αq

i

= ⟨ψm|Û†
1 Û

†
r,iÛ

†
2M̂sÛ2

∂Ûr,i

∂αq
i

Û1|ψm⟩+ h.c. (6)

∂Ûr,i

∂αq
i

= ûi1(α
1
i )⊗ ûi2(α

2
i ) · · · ⊗

∂ûiq
∂αq

i

⊗ · · · ûiNsys
(α

Nsys
i )

Then we can utilize the matrix exponential gradient [1] to calculate the gradient:
∂ûi

q

∂αq
i

Similarly, for the parameters {θl
ld
} in the circuit of deterministic layers Û1, Û2, the gradient of parameters in this neural

network can also be obtained from the matrix exponential gradient [1].

TRAINING DETAILS OF OBSERVABLES LEARNING TASK

Training Details

In this section, we provide details about the observables learning task. While the quantum neural network contains Nsys

qubits, the Hilbert space dimension is D = 2Nsys . Each input wave function |ψ⟩ can be expanded as:

|ψ⟩ = 1

N
D∑

s

(as + ibs)|s⟩, (7)

where {|s⟩} represents the bases of this Hilbert space, {as, bs} are randomly sampled from the uniform distribution [−1, 1],
and N is the normalization factor. The target physical observables are diagonal in these bases with eigenvalues randomly
sampled from the uniform distribution [−2.5, 2.5]. To avoid overfitting, the size of the training set ND must be larger than
the degree of freedom of D-dimensional hermition matrices, i.e. ND > D2 = 22Nsys . The output of the randomized neural
network is Pm = ⟨ψm|∑Nr

i=1 piÛ
†
tot,i(β0Î + β1σ̂z)Ûtot,i|ψm⟩. We use Mean Square Error (MSE) as the loss function, denoted

as L = 1
ND

∑
m(Pm − Tm)2. To escape from the local minima, we use mini-batch Adam method to update parameters and set

the learning rate η = 0.01. Table [I] shows the training dataset size for different quantum system size.
We also apply the optimized neural network to the testing dataset containing Ntest = 200 samples. Fig.[2] shows the

logarithmical mean square error of test dataset for different system size.

Opening the black box

Based on the training results presented in the main text, it was found that for the two-qubit system, by setting Nr = 3,
the loss can be significantly reduced as low as 10−15. We further investigate the effectiveness of the quantum neural network
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TABLE I: Hyper parameters of QNN

Nsys D L2 ND Nbatch Epochmax

2 4 1 100 20 1000

3 8 4 200 40 1500

4 16 6 500 100 2000

5 32 8 1500 300 3000

Nsys=2

Nsys=3

Nsys=4

Nsys=5

1 2 3 4
-25

-20

-15

-10

-5

0

Nr

lo
g
10
(M
S
E
)

FIG. 2: Logarithmical mean square error of test dataset with 200 samples for Nsys = {2, 3, 4, 5} and Nr = {1, 2, 3, 4}. Markers are the
averaged loss of 10 different training processes and error bars are the standard deviation.

in learning observable expectations. As shown in Fig.[2] in the main text, when Nsys = 2, Nr = 3, we can predict the
observable’s expectation with extremely high accuracy. After training, we find that the probabilities of each random unitary
are almost same wi = 1/Nr. Consequently, the final prediction of the neural network is P = 1

3

∑Nr=3
i=1 Pi where Pi =

⟨ψ|Û†
tot,i(β0σ̂0 + β1σ̂z)Ûtot,i|ψ⟩. This results in the predicted operator reading as:

Ôpre =
1

3

Nr=3∑

i=1

ôi, (8)

with ôi = Û†
tot,i(β0σ̂0 + β1σ̂z)Ûtot,i. Noticing that the target observable is diagonal, it can be found that, after training, each

element of Ôpre is very close to that of Ô.
We expand each predicted operator ôi in Pauli string operator bases ôi =

∑
ab C

i
abσ̂a ⊗ σ̂b where a, b = x, y, z, 0. C00

represents the trace of Ô and Czz, Cz0, C0z, C00 can reconstruct the diagonal elements of Ôpre. The random unitaries are tensor
products of unitaries applied to each single-qubit, i.e. Ûr,i = ûi1 ⊗ ûi2. For the sake of simplicity, Ûr,1 can be absorbed into Û2.
We then found that Ûr,2 and Ûr,3 commute with the Pauli operator σ̂z ⊗ σ̂0 and σ̂0 ⊗ σ̂z . This implies that Ûr,2 and Ûr,3 rotate
each qubit in its own Bloch sphere along z axis. So from the coefficients obtained through expansion, we can obtain the angles
projected in the x− y plane:

ξ1,z = arctan(Czy/Czx), ξ1,0 = arctan(C0y/C0x), (9)
ξ2,z = arctan(Cyz/Cxz), ξ2,0 = arctan(Cy0/Cx0). (10)

For Nr = 3, the angle difference of each qubit between different ôi is 2π/3. This implies that ξ1l,a − ξ2l,a = ξ2l,a − ξ3l,a =
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ξ3l,a − ξ1l,a = 2π/3 where l = {1, 2}, a = {z, 0}. Furthermore, table[II] illustrates certain relations between coefficients,
ensuring the summation of off-diagonal elements of ôi vanishes.

TABLE II: Relations between coefficients of predicted operators

a

b
x y z 0

x Cxx Cxy Cxz Cxz

y −Cxy Cxx Cyz Cyz

z Czx Czy Czz Cz0

0 Czx Czy C0z C00

TRAINING DETAILS OF RÉNYI ENTROPIES LEARNING TASK

Training Details

In this section, we’ll describe the data generation process for the Rényi entropies learning task and the optimization method
for parameters. Similar to the observable learning task, we consider a quantum system containing Nsys = 5 qubits. The Hilbert
space dimension is D = 25 and each input wave function is generated as given by eq. (7). After the evolution, we measure the
subsystem in the bases xs = |⟨s|Ûr,i|ψ⟩|2, s = 1, 2, · · · , 2Nsub . When learning the purity, T = Tr[ρ̂2sub] is a quadratic function
of reduced density matrices. Therefor, in this case we set the classical non-linear function to also be a quadratic function of
measurement results x.

fβ(x⃗) = β0 + β⃗T
1 x⃗+ x⃗Tβ2x⃗ (11)

We also use mini-batch Adams to optimize parameters in these randomized quantum neural networks. Specifically, we set
ND = 100, Nbatch = 20 for Nsub = 1 and ND = 200, Nbatch = 40 for Nsub = 2. The learning rate is set to η = 0.01. After
training, we apply this neural network to a test dataset consisting of Ntest = 200 samples to ensure that the neural network has
learnt the purities.

Convergence of Randomness for n=2 Rényi Entropy

In the main text, we demonstrated that for Nsub = 1, we need Nr = 3 random unitary operators, and for Nsub = 2, we
require Nr = 9 random unitary operators to predict n = 2 Rényi entropy with high accuracy. Here, for Nsub = 2, we further
support our conclusion by comparing the learning performance of Nr = 9 and Nr = 10. Both loss functions decay rapidly with
exponential behavior and converged to nearly the same value, as shown in Fig. 3(a). After training, we extracted the probabilities
{wi} of each random unitary operator. They are all approximately equal to 1/9 for Nr = 9, and one probability would vanish
for Nr = 10. This implies that for Nsub = 2, Nr = 32 is enough for achieving good performance.

Third Order Entropy Learning

We also applied the randomized quantum neural networks to learn higher-order Rényi entropies, specifically, T = Tr[ρ̂3sub].
In this case, the label is a third order polynomial function of the density matrix. As a result, we set the classical non-linear
function up to be a third-order polynomial of measurement results:

fβ(x⃗) = β0 + β⃗T
1 x⃗+ β⃗T

2 x⃗
⊗2 + β⃗T

3 x⃗
⊗3 (12)
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Nr=9
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n=2 Nsys=5 Nsub=2

(a)

FIG. 3: The results for learning the second order Tr[ρ̂2sub] for Nsub = 2. (a) The logarithmical mean square error for Nr = 9 and Nr = 10
is averaged over the training process for 10 different random initializations, with the shaded region representing the standard deviation. The
dashed lines represent the validation loss using a dataset containing 200 samples. (b) Probabilities of random unitary operators for Nr = 9 and
Nr = 10 in decreasing order. These optimal parameters {wi} are averaged over the training process for 10 different random initializations
with error bars included.

However, after training, we observed that the third-order coefficients β⃗3 vanish for the subsystem with one qubit. The loss for
Nr = 3 also decreases exponentially which is consistent with the analytical calculation for a general single-qubit density matrix:

ρ̂sub =

(
ρ11 ρr12 + iρi12

ρr12 − iρi12 1− ρ11

)

Tr[ρ̂3sub] = 1− 3ρ11 + 3ρ211 + 3|ρ12|2 (13)

where ρ12 = ρr12 + iρi12, and ρ̂sub is semi-positive with unit trace. The single-qubit Rényi entropies with n = 2, 3 have a similar
form. Tr[ρ̂2sub] = 1 − 2ρ11 + 2ρ211 + 2|ρ12|2. Therefore, Nr = 3 is also suitable for n = 3 Rényi entropy. However, for
Nsub = 2, β⃗3 makes a great contribution.As shown in Fig. 3(d) in the main text, increasing Nr leads to the loss converging to a
lower value.

TRAINING DETAILS OF PATTERN RECOGNITION TASK

Training Details

In this section, we’ll provide details on how we encode the ”Street View of House Number (SVHN)” data into the 5-qubit
quantum system, explain the explicit form of the nonlinear function, and describe the optimization methods used.

Each pattern in the original SVHN dataset contains a grid of 32 × 32 pixels, with each pixel having three RGB channels.
Initially, we convert these RGB images to grayscale using a weighted combination: 0.2989R + 0.5870G + 0.1140B. Next, we
resize the 32 × 32 pixel images to 8 × 8 pixels by averaging the nearest 4-by-4 neighborhood. Then, we reshape this resulting
8× 8 matrix into a 32× 2 matrix, with the first column representing the real part of the coefficients of the basis and the second
column representing the imaginary part of the coefficients in eq.(7). For demonstration, we selected two patterns from all the
images. We labeled one pattern as ’1’ and the other as ’0’. After measuring the single qubit, we set the non-linear function as a
polynomial of the measurement output x:

fβ(x) =

5∑

k=0

βkx
k (14)

And for this classification task, we take cross-entropy as the loss function:

L =
1

ND

ND∑

m

−Tm log(Gm)− (1− Tm) log(1− Gm) (15)
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FIG. 4: Training results comparison with the same computational cost. (a) The observable learning result for Nsys = 2 with save NrL2. (b)
The patter recognition result for Nsys = 5. The red line and the pink line contain same computational cost Nr(L1 + L2) = 8. The training
results are averaged over the training process for 10 different random initializations, and the shaded region represents the standard deviation.
The dashed lines are the validation loss with the dataset containing 200 samples.

where Gm = 1/1 + exp(−Pm) in the region (0,1). We also use mini-batch Adams to optimize parameters in this randomized
quantum neural network with ND = 1200, L1 = L2 = 4, Nbatch = 300, η = 0.01.

COMPARISON WITH FIXED COMPUTATIONAL COST

In this section, we discuss the computational cost of the QNN with a random layer. In our approach, we introduce one random
layer into the QNN, and the final prediction is based on the ensemble average of this random layer. The computational cost of
the QNN scales linearly with both Nr and the depth of the deterministic layers L1, L2. Therefore, to make a fair comparison,
we consider the results of different Nr with the same Nr(L1 + L2).

For the observable learning task we set the deterministic layer Û1 as the identity, i.e. In this context, using L1 = 0. Nr =
3, L2 = 1 is sufficient to predict the observables’ expectations with high accuracy for a quantum system with Nsys = 2. In our
investigation, we set L2 = 3, 2 for Nr = 1, 2 while keeping NrL2 approximately same. FIG. 4(a) illustrates that, for the same
computational cost, introducing appropriate randomness can enhance the expressivity of the QNN. This enhancement occurs
without the necessity of increasing the depth of the QNN. Even when considering Nr = 2, L2 = 2, the computational cost is
higher than when using Nr = 3, L2 = 1.

Similar results are observed for the pattern recognition task. We set the deterministic layers Û1, Û2 as variational with the
same circuit depth L1 = L2. Pattern recognition is a typical machine learning task, where the both data and the function are
classical. Thus FIG.4(b) shows that, even with just one brick wall unit in the deterministic, the configuration with Nr = 4 also
has better learning performance than that of Nr = 1, L1 = L2 = 4.
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