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Gacha game is a special opaque selling approach, where the seller is selling gacha pulls to the buyer. Each

gacha pull provides a certain probability for the buyer to win the gacha game reward. The gacha game has

been enthusiastically embraced in numerous online video games and has a wide range of potential applications.

In this work, we model the complex interaction between the seller and the buyer as a Stackelberg game, where

the sequential decision of the buyer is modeled as a Markov Decision Process (MDP). We define the whale

property in the context of gacha games. Then, we show that this is the necessary condition to achieve optimal

revenue. Moreover, we provide the revenue-optimal gacha game design and show that it is equivalent to the

single-item single-bidder Myerson auction. We further explore two popular multi-item gacha games, namely,

the sequential multi-item gacha game and the banner-based multi-item gacha game. We also discuss the

subsidies in the gacha game and demonstrate how subsidies may encourage the buyer to engage in grinding

behavior. Finally, we provide a case study on blockchain systems as gacha games.
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1 INTRODUCTION
Gacha game [1] is a special opaque selling strategy, where the seller is selling gacha pulls to the

buyer. Each gacha pull provides a certain probability for the buyer to win the gacha game, similar

to a lottery ticket. Once the buyer wins the gacha game, he will receive the gacha game reward,

e.g., a valuable item. Different from the straightforward lottery ticket, the probability to win the

gacha game in each gacha pull can be varied.

One of the most popular applications of the gacha game is the video games. The gacha mechanic

has been widely used in video games since the 2010s [42]. Most of these games are free-to-play

(F2P) mobile games like “Genshin Impact”, wherein the gacha mechanic is designed to incentivize

players’ in-game buying activities. Besides, the gacha game also has a wide range of applications in

the realistic world, such as car plate lottery and probabilistic selling in e-commerce [30, 39, 46].

With the popularity of the gacha games, many interesting mechanisms have emerged, such as

the varying-probability mechanism, reset-after-winning mechanism, and banner-based design,

etc. With the widespread use of these interesting mechanisms, the underlying properties and the

revenue guarantee remain mostly unclear.
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In this paper, we model the complex interaction between the seller and the buyer in the gacha

game as a two-stage Stackelberg game, where the seller first designs the gacha game configuration

including the price of each gacha pull and the winning probability in each round, and the buyer will

then decide whether to buy the gacha pull from the seller. The buyer will engage in a consecutive

interaction with the seller, andmay buy a large number of gacha pulls sequentially. Such a sequential

decision of the buyer can be modeled by a Markov Decision Process (MDP).

Next, we introduce a special kind of gacha game, gacha games with the whale property. For

a whale property gacha game, the optimal policy for a rational buyer in that game is to either

continue pulling the gacha until he wins or never pull the gacha. That is, the best response of

a rational buyer is similar to “take-it-or-leave-it”. On the contrary, the buyer in the non-whale

property gacha game may pull the gacha game several times and then quit midway. One of our

major findings is that the whale property is necessary for the seller’s revenue maximization. We

further show the equivalence of the gacha game and the single-item single-bidder Myerson auction

[33] and figure out the optimal game configuration that can achieve the maximum seller’s revenue.

We also investigate the gacha game where multiple items are sold. The multi-item gacha game

includes multiple phases and each phase contains exactly one item. The buyer plays a gacha game

in each phase. If the buyer wins the gacha game in the 𝑘-th phase, he will get the reward of that

phase and then enter the next phase. One unique feature of the multi-item gacha game is that each

phase could start at different states (or, winning probabilities), depending on how many times the

buyer has pulled to get to the current phase. Such a history-dependent feature complicates the

system design, and seems to degenerate the seller’s revenue. A common practice is to introduce

some “reset” mechanisms to let the buyer restart the pulling process at some point, e.g., reset the

winning probability to the case as if the first pull after the buyer wins. Interestingly, with the two

typical multi-item gacha game designs we analyzed, namely, the sequential gacha game and the

banner-based gacha game, we will show that the idea of putting buyers back from the beginning has

different impacts on different gacha games. The sequential gacha game captures the scenario where

the buyer will pull the gacha game many times, which is common in many online video games.

The reset-after-winning mechanism in the sequential gacha game will reset the buyer’s state when

the buyer wins the gacha game, as opposed to the succeed-after-winning mechanism. The popular

F2P gacha game “Genshin Impact” adopts the reset-after-winning mechanism, while “Tower of

Fantasy” adopts the succeed-after-winning mechanism. We show that the succeed-after-winning

mechanism can achieve a higher seller’s revenue compared to the reset-after-winning mechanism,

while the reset-after-winning mechanism can achieve asymptotic optimality when there are infinite

items. Besides, compared with the traditional bundle selling, which is also asymptotical optimal,

the sequential gacha game can achieve a higher seller’s revenue when considering buyer’s budget

constraint. The banner-based gacha game allows the buyer to opt-out the current phase, and will

end a phase either the buyer wins the gacha game in the current phase or chooses to opt-out. This

models the practical scenario where the items can only be acquired during a predetermined event

time period, which is known as “banner”. Each banner contains a specific item and works like a

single-item gacha game. After a period of time, the next banner is released and replaces the current

one. In the banner-based gacha game, the succeed-after-opt-out mechanism will carry the buyer’s

state from the current banner to the next banner, while the reset-after-opt-out mechanism will

reset the buyer’s state at the beginning of the next banner when the buyer chooses to opt-out.

Then, we show that the following three selling mechanisms are equivalent in optimal revenue: (i)

the reset-after-opt-out mechanism, (ii) the succeed-after-opt-out mechanism, and (iii) the separate

selling with several independent single-item gacha games. Moreover, we find that the succeed-after-

opt-out mechanism can achieve a higher seller’s revenue when the buyers are budget-constrained.
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This explains why the succeed-after-opt-out mechanism in the banner-based gacha game is popular

in online video games.

Besides, we investigate the subsidies in the gacha game, where the seller will provide free

gacha pulls to the buyer as subsidies. This is a common practice in many online video games [42].

Particularly, players in online video games can obtain some free gacha pulls by finishing some

commissions, which motivates the players to play the game. Different from the previous research

on subsidies in the market, where subsidy serves as a price discount [13], subsidies in the gacha

game directly provide free gacha pulls to the buyers. With free gacha pulls, the buyers may get

the reward of the gacha game for free without buying any gacha pulls from the seller, which may

harm the seller’s revenue. This property makes the subsidies in the gacha game more challenging.

We show that subsidies in the varying-probability gacha game help the seller to further steer the

buyer’s behavior, and thus improve the seller’s revenue. But we also show that the subsidies would

harm the seller’s revenue in the fixed-probability single-item gacha game and may lead to the

buyer’s grinding behavior in the banner-based multi-item gacha game.

Finally, we show that there is a wide range of applications of the gacha game, and the analysis

and design of the gacha game can provide practical insights for these scenarios. Specifically, we

provide a case study of the gacha game on the blockchain system. We model the blockchain system

as a gacha game, where the buyers are the miners or validators, the seller is the system designer

who wants to achieve the maximum security of the blockchain. The analysis of the gacha game

can be applied to the blockchain system, and provide practical insights for the blockchain design.

Next, we provide a summary of our contributions and findings as follows:

(1) We propose the mathematical and systematical modeling framework for the gacha game,

where the sequential decision of the buyer is modeled as a Markov Decision Process (MDP).

Besides, we are the first to theoretically investigate the special characteristics and mecha-

nisms of the gacha games including the whale property, the multi-item gacha game design

and subsidies in the gacha game. The theoretical results of our proposed model are highly

consistent with the empirical results of the previous sociological and psychological research.

(2) We introduce the definition of whale property in the gacha game and show the revenue

optimality of the whale property. Besides, we show the equivalence of an arbitrary gacha game

and the corresponding single-item single-bidder Myerson auction with explicit allocation

rule and payment rule. We further provide the optimal gacha game configuration that can

achieve the maximum seller’s revenue.

(3) We explore two popular multi-item gacha game designs, namely, the sequential multi-item

gacha game and the banner-based multi-item gacha game. We further discuss the reset-after-

winning and succeed-after-winning mechanisms in the sequential gacha game, as well as

the reset-after-opt-out and the succeed-after-opt-out mechanisms in the banner-based gacha

game. Compared with the traditional multi-item selling methods, including bundle selling

and separate selling, the multi-item gacha game design can achieve a higher seller’s revenue

when considering buyer’s budget constraint.

(4) We study the subsidies in the gacha game, where the seller may provide free gacha pulls

to the buyer. We show that when the buyer’s valuation is too low, subsidies in the varying-

probability gacha game can motivate the buyer to pull the gacha game and thus improve the

seller’s revenue. However, subsidies in the banner-based multi-item gacha game may lead to

the buyer’s grinding behavior, which may harm the seller’s revenue.

(5) We discuss potential applications of the gacha game, and are the first to model the blockchain

system as a gacha game, and provide practical insights for the blockchain design from the

gacha game perspective.
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This paper is organized as follows. Section 2 presents a review of the related work. In Section 3,

we provide an overview of the modeling framework in gacha games. In Section 4, we investigate

the revenue optimal single-item gacha game. In Section 5, we explore the multi-item gacha game. In

Section 6, we discuss the subsidies and the buyer’s grinding behavior in the gacha game. In Section

7, we provide a case study of the gacha game on blockchain systems. In Section 8, we conclude the

paper with the final remark. Due to space limitations, the detailed calculation of the examples and

the proofs of the theoretical results are provided in appendix.

2 LITERATURE REVIEW
Our work draws inspiration from and is related to several areas across social analysis, operation

management, computer science, and economics.

Most of the previous research on the gacha game is from the sociological and psychological

perspectives. These previous works empirically analyze the gacha game mainly from statistics,

psychology, and society. Different from the previous work, we are the first to propose amathematical

and systematical modeling framework for the gacha game. In [24, 27, 29], the authors compare the

gacha game to gambling. [35] proposes a psychoanalytical approach to analyze the gacha game.

Besides, [44] claims that the gacha system is addictive and problematic. In our work, we introduce

the whale property and explain why some buyers may continue pulling the gacha until they win

the game. [9, 31] find that in the financing of gacha games, a large part of the game’s revenue

originates from a very small proportion of players who spend a large amount of money, essentially

subsidizing the game for other players who may spend less money. This finding is consistent with

the theoretical results of the optimality of the whale property gacha game. For the banner-based

gacha game, [41] shows that the maximum cost of limited-time gacha was higher although the

average probability of obtaining the rarest items was increased. Correspondingly, we show the

banner-based gacha game with the succeed-after-opt-out mechanism is friendly to the buyers

and can achieve a higher seller’s revenue when the buyers are budget-constrained. Besides, [42]

discusses the revenue-generating mechanism in gacha game, where players may be given free or

discounted gacha pulls, but have to pay to get more. We model this mechanism as subsidies in

gacha game and discuss its effect. In many F2P gacha games, the player may accumulate the free

gacha pulls through grinding [31, 45]. We theoretically model the buyer’s grinding behavior caused

by subsidies.

In the operation management literature, our work connects with the dual streams of papers on

opaque selling [4, 14, 19, 20]. Gacha games are an example of opaque selling where the buyers

can only buy the gacha pull and each gacha pull provides a certain probability for the buyers to

win the gacha reward. Recent works [7, 8, 12] have focused on selling with lottery to manage

imbalanced customer demand or induce opportunities for price discrimination. Our gacha game

framework diverges from the standard lottery selling in a number of key ways. First, the probability

to win the gacha game in each gacha pull is varying during the buyer’s gacha pulling process. The

simple lottery selling is one of the special cases of the gacha game, i,e., the fixed-probability gacha

game. Second, we model the complex interactions between the gacha seller and the buyer, where

the sequential decision of the buyer is modeled as a Markov Decision Process (MDP), as opposed

to prior work which has focused on the one-shot behavior of the buyers. Third, we investigate

several interesting characteristics and mechanisms in gacha games, such as whale property, varying-

probability mechanism, reset-after-winning mechanism, multi-item gacha game design, etc, which

to the best of our knowledge, is the first work to provide theoretical analysis for these mechanisms.

Our work also resembles and references the work on loot box [11]. Loot box is a consumable item

with a random allocation of several items, whose contents are not revealed until after purchase. The

authors in [11] focus on two types of loot boxes, namely, the traditional box and the unique box,
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which are classified based on whether the loot box contains duplicate items. Distinguished from

the previous work on loot box, we consider several interesting characteristics and mechanisms in

gacha games, which are typical and fundamental mechanisms in the gacha games, but may not be

applied to the classical loot box in [11].

Besides, our work distinguishes from [15]. The author in [15] investigates the optimal pricing

problem in gacha game, where the consumers behave according to prospect theory and present

preference for gambling. Whereas the consumers in our work are risk-neutral. Besides, we also

investigate several common mechanisms and phenomena in the gacha game, which to the best of

our knowledge, have not been mathematically studied yet.

Moreover, our work contributes to the emerging literature on operation management in video

games. In [21] , the authors investigate the problem of maximizing players’ engagement in online

video games. [40] studies the incentivized actions in freemium games. [23] compares the transparent

selling strategy and the opaque selling strategy in the free-to-play games. [49] proposes a dynamic

model of the player’s level-progression decision in online gaming. [17] considers the problem of

designing video games so that players with different resources play diverse strategies. [48] studies

the effect of random reward mechanisms in video games on player experience. Our work is the

first to provide a systematic analysis for the gacha game.

Besides, our work can be widely applied to many scenarios beyond the video game, such as

license plate lottery and probabilistic selling [30, 39, 46]. Specifically, we provide a detailed case

study for the application of the gacha game on the blockchain system. To the best of our knowledge,

this is the first gacha game model for the blockchain system. Some of the existing works model the

Proof-of-Stake (PoS) blockchain as a lottery. [22] models the PoS protocol as a lottery and provides

a fairness analysis for blockchain incentives. [6] investigates the anonymous lottery in the PoS

setting. [28] designs a block producing algorithm based on PoS named Proof-of-Lottery to achieve

high scalability. Compared to the existing work, we first model the blockchain system as the gacha

game, and adopt the mechanisms in gacha game to analyze the existing protocols.

3 GACHA GAME MODEL OVERVIEW
We consider a revenue-maximizing seller selling a specific item using the gacha game framework.

A buyer’s valuation for the reward of the gacha game is described by the non-negative variable

𝑅, where 𝑅 is drawn from a distribution 𝐹 . The mean and variance of 𝐹 are denoted by 𝜇 and 𝜎2
,

respectively. We assume that the seller knows the distribution 𝐹 . This is a common assumption

when we need to maximize the seller’s revenue [18, 33]. Besides, it is also practical in some scenarios

such as video games [10] and online platforms [16]. In the gacha game, the seller will first design the

gacha game configuration, including the probability of winning the gacha game in the 𝑖-th gacha

pull 𝑝𝑖 and the price of each gacha pull 𝑐 . The buyer will then choose whether to buy the gacha

pull after knowing the gacha game configuration, which can be modeled as a Markov Decision

Process (MDP). The interaction between the buyer and the seller can be modeled as a two-stage

Stackelberg game.

3.1 Buyer Stage
The buyer will decide whether to buy the gacha pull based on the game configuration and his

personal valuation 𝑅 of the item in the gacha game. The buyer’s utility is defined as the valuation

of the item in the gacha game minus the cost for buying the gacha pulls. The buyer behavior can

be modeled as a Markov Decision Process (MDP) represented as a 4-tuple (S,A,P𝑎,R𝑎), which
is shown in Figure 1. S = {𝑆1, 𝑆2, 𝑆3, · · · } is a set of states, which can be either finite or infinite.

𝑆𝑖 ∈ S denotes the state that the buyer has pulled 𝑖 − 1 gacha pulls but does not win the desired

item, that is, the buyer is currently at the 𝑖-th round of the gacha game. Specially, 𝑆∗ ∈ S denotes
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Fig. 1. Markov Decision Process in Gacha Game

the absorbing terminal state that the buyer wins the gacha game. 𝑆𝑞 ∈ S denotes the terminal state

that the buyer quits the gacha game. Note that we consider each gacha pull as a round in the gacha

game. A is the action space of the MDP. There are only two actions in each state of this MDP,

namely, 𝑎𝑝 and 𝑎𝑞 . The action 𝑎𝑝 means that the buyer will buy a gacha pull, and the action 𝑎𝑞
means that the buyer quits the gacha game. 𝑃𝑎 (𝑆, 𝑆 ′) = Pr(𝑆𝑡+1 = 𝑆

′ |𝑆𝑡 = 𝑆, 𝑎𝑡 = 𝑎) is the transition
probability that action 𝑎 in state 𝑆 at time 𝑡 will lead to state 𝑆 ′ at time 𝑡 + 1. Specifically, we have

𝑃𝑎𝑝 (𝑆𝑖 , 𝑆𝑖+1) = 1 − 𝑝𝑖 ; 𝑃𝑎𝑝 (𝑆𝑖 , 𝑆∗) = 𝑝𝑖 ; 𝑃𝑎𝑞 (𝑆𝑖 , 𝑆𝑞) = 1.

𝑅𝑎 (𝑆, 𝑆 ′) is the expected immediate reward received after transitioning from state 𝑆 to state 𝑆 ′.
Specifically, we have

𝑅𝑎𝑝 (𝑆𝑖 , 𝑆𝑖+1) = −𝑐; 𝑅𝑎𝑝 (𝑆𝑖 , 𝑆∗) = 𝑅 − 𝑐; 𝑅𝑎𝑞 (𝑆𝑖 , 𝑆𝑞) = 0.

The buyer is utility-maximizing and will pick up the optimal policy 𝜋∗
to maximize his utility. The

buyer behavior is indeed a sequential decision, and the buyer only needs to decide when to stop

pulling the gacha game. Therefore, the set of the available policies in thisMDP is {𝜋0, 𝜋1, 𝜋2, · · · , 𝜋∞}.
Here 𝜋𝑘 denotes the policy that the buyer will pull the gacha until he wins the gacha game midway

or he has reached the state 𝑆𝑘+1 and then stops pulling. Specially, 𝜋∞ denotes the policy that the

buyer will always pull the gacha until he wins the gacha game, and 𝜋0 denotes the policy that the

buyer will never pull the gacha. The value of MDP of the policy 𝜋𝑘 at state 𝑆𝑖 is

𝑉𝜋𝑘 (𝑆𝑖 ) =


0, 𝑘 < 𝑖,

𝑝𝑘𝑅 − 𝑐, 𝑘 = 𝑖,

𝑝𝑖𝑅 − 𝑐 + (1 − 𝑝𝑖 )𝛾𝑉𝜋𝑘 (𝑆𝑖+1), 𝑘 > 𝑖,

where 𝛾 is the discount factor satisfying 0 ≤ 𝛾 ≤ 1 in MDP. In our gacha game model, we assume

that 𝛾 = 1, which is reasonable because 𝑉𝜋𝑘 (𝑆𝑖 ) is bounded, and practically, a gacha game can be

considered as a short-term procedure, where the discount effect is not significant. Then the value

of MDP of the policy 𝜋𝑘 at state 𝑆𝑖 is formulated in the following lemma.

Lemma 3.1. The value of MDP of the policy 𝜋𝑘 at state 𝑆𝑖 is

𝑉𝜋𝑘 (𝑆𝑖 ) =
(
1 −

𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑅 −

(
𝑝𝑖 +

𝑘∑︁
𝑚=𝑖+1

(𝑚 − 𝑖 + 1)𝑝𝑚
𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 ) + (𝑘 − 𝑖 + 1)
𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑐.

The buyer in the gacha game is rational. Initially, the buyer is at state 𝑆1, and will pull the gacha

game if and only if ∃𝑘 > 0,𝑉𝜋𝑘 (𝑆1) ≥ 0. The optimal policy for the buyer at state 𝑆𝑖 is investigated

in the following lemma.

Lemma 3.2. The policy 𝜋𝑘 at state 𝑆𝑖 is optimal if and only if the following conditions are satisfied:
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(1) 𝑉𝜋𝑘 (𝑆 𝑗 ) ≥ 0, ∀𝑗 ∈ [𝑖, 𝑘].
(2) 𝑉𝜋𝑙 (𝑆𝑘+1) ≤ 0, ∀𝑙 ∈ [𝑘 + 1,∞).

Lemma 3.2 implies that the optimal policy in the gacha game is deterministic. Specifically, if 𝜋𝑘
is the optimal policy at state 𝑆𝑖 , then 𝜋𝑘 is also the optimal policy for 𝑆 𝑗 , ∀𝑗 ∈ [𝑖, 𝑘]. Specially, the
optimal for the buyer at the initial state 𝑆1 is 𝜋𝑘 , where 𝑘 = arg max𝑙 𝑉𝜋𝑙 (𝑆1). And this policy would
not be changed during the gacha pulling process.

3.2 Seller Stage
We assume that the seller is a monopolist and wants to maximize his revenue. The seller will first

design the gacha game configuration including the probability of winning the gacha game in the

𝑖-th gacha pull 𝑝𝑖 and the price of each a gacha pull 𝑐 . The revenue of the seller comes from selling

the gacha pulls to the buyers. For a buyer with policy 𝜋𝑘 , the expected number of gacha pulls that

he will buy is 𝐸 (𝜋𝑘 ), which is formulated in the following lemma. Then the expected revenue of the

seller obtaining from selling the gacha pulls to this buyer is 𝑐 · 𝐸 (𝜋𝑘 ). Note that the buyer’s policy
𝜋𝑘 is highly dependent on the game configuration. Therefore, to maximize the seller’s revenue, the

seller should carefully design the game configuration.

Lemma 3.3. For the buyer who adopts policy 𝜋𝑘 and is currently at state 𝑆𝑖 , the expected number of
gacha pulls that the buyer will buy is

𝐸 (𝜋𝑘 , 𝑆𝑖 ) =
{

0, 𝑘 < 𝑖,

𝑝𝑖 +
∑𝑘
𝑗=𝑖+1

( 𝑗 − 𝑖 + 1)𝑝 𝑗
∏𝑗−1

𝑙=𝑖
(1 − 𝑝𝑙 ) + (𝑘 − 𝑖 + 1)∏𝑘

𝑗=𝑖 (1 − 𝑝 𝑗 ), 𝑘 ≥ 𝑖 .

Briefly, when there is no further confusion, we denote the expected number of gacha pulls that a

buyer with policy 𝜋𝑘 will buy at initial state 𝑆1 as 𝐸 (𝜋𝑘 ) = 𝐸 (𝜋𝑘 , 𝑆1). Besides, the expected number

of gacha pulls needed to win the gacha game is denoted as 𝐸 (𝜋∞) = 𝐸 (𝜋∞, 𝑆1).

3.3 Typical Gacha Game
We divide the gacha games into two categories as follows:

Fixed-Probability Gacha Game: A fixed-probability gacha game is a gacha game where the

probability of winning the gacha game remains the same during the buyer’s gacha pull process,

i.e., 𝑝𝑖 ≡ 𝑝 , where 𝑝 is a fixed probability. Specially, the lottery is indeed a fixed-probability gacha

game, where the ticket in the lottery corresponds to the gacha pull in the gacha game.

Varying-Probability Gacha Game: A varying-probability gacha game is a gacha game where

the probability of winning the gacha game in each gacha pull may be different, i.e., we allow that

∃𝑖 ≠ 𝑗, 𝑝𝑖 ≠ 𝑝 𝑗 . The fixed-probability gacha game is just a special case of the varying-probability

gacha game. Specially, the winning guarantee mechanism in the varying-probability gacha game,

i.e., ∃𝑁, s.t. 𝑃𝑁 = 1, is called “pity system” [50], which is widely adopted to prevent the aggravating

situation where the buyer buys numerous gacha pulls but receives nothing.

4 REVENUE OPTIMAL SINGLE-ITEM GACHA GAME
In this section, we first introduce the definition of “Whale Property”, and then show that the whale

property gacha game can achieve the maximum seller’s revenue, while the non-whale property

gacha game performs worse. We also show the equivalence of the gacha game and the single-item

single-bidder Myerson auction and further figure out the optimal gacha game configuration that

can achieve the maximum seller’s revenue. Besides, when the buyer has budget constraints, the

gacha game can achieve a higher seller’s revenue compared to the “take-it-or-leave-it” strategy.
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4.1 Whale Property
In many online video games with gacha mechanisms, once the buyer pulls one gacha pull, he is

likely to continue pulling gacha until he wins the gacha game [44]. In this paper, we define this

addictive property as “whale property” for the rational buyer, where the definition comes from the

fact that the high-spending players are often colloquially referred to as “whales” [47]. For the gacha

game with the whale property, the optimal policy for a rational buyer is to either never pull the

gacha game, i.e., adopt the policy 𝜋0, or continue pulling the gacha game until he wins the gacha

game, i.e., adopt the policy 𝜋∞. The whale property is mathematically defined as follows.

Definition 4.1. (Whale Property) A gacha game G has the whale property if and only if for any

buyer with any non-negative valuation in the gacha game, his optimal policy is either 𝜋0 or 𝜋∞,
that is, the following condition always holds:(

∃𝑘,𝑉𝜋𝑘 (𝑆1) ≥ 0

)
⇒

(
∀𝑖,𝑉𝜋∞ (𝑆𝑖 ) ≥ 0

)
,

i.e., if it is profitable for the buyer to pull the gacha game initially, he will continue pulling the

gacha game until he wins, otherwise, he will never pull.

For the gacha game with the whale property, the optimal policy for the buyer will be either 𝜋0

or 𝜋∞, i.e., (“take-it-or-leave-it”), which is shown in the following lemma.

Lemma 4.2. The optimal policy 𝜋∗ for the buyer in the gacha game with the whale property is

𝜋∗ =

{
𝜋∞, When 𝑉𝜋∞ (𝑆1) ≥ 0 ⇔ 𝑅 ≥ 𝐸 (𝜋∞) · 𝑐,
𝜋0, When 𝑉𝜋∞ (𝑆1) < 0 ⇔ 𝑅 < 𝐸 (𝜋∞) · 𝑐.

Lemma 4.2 implies that the buyer’s behavior in the whale property gacha game is only related to

the expected number of gacha pulls to win the gacha game 𝐸 (𝜋∞) and the price for each gacha pull

𝑐 , which can help to simplify the analysis of the whale property gacha game. In the whale property

gacha game, if the buyer’s valuation is high enough (i.e., 𝑅 ≥ 𝐸 (𝜋∞) · 𝑐), he will continue pulling
the gacha game until he gets the desired item. Otherwise, he will never pull the gacha game.

In some gacha games, to attract the buyers to buy the gacha pull, the seller will monotonically

increase the probability of winning the gacha in each gacha pull. The following lemma shows that

these gacha games with increasing probability have the whale property.

Lemma 4.3. If the probability of winning the gacha game is monotonically increasing for each gacha
pull, i.e., 𝑝𝑖 ≤ 𝑝𝑖+1,∀𝑖 , the gacha game has the whale property.

Lemma 4.3 implies that the fixed-probability gacha game and the varying-probability gacha game

with non-decreasing probability have the whale property. In fact, the whale property is present in

a lot of gacha games in the real world, which keeps players addicted to them [47].

For the non-whale property gacha game, the expected value in the gacha game at the initial

states is high, which can attract the buyer to join in the game. And the buyer may stop pulling

the gacha midway when his expected value at that state is negative. Some video games apply the

novice bonus such as a high probability to win the gacha game at the beginning, or discounted

price to attract new players. This novice bonus reflects the non-whale property of the gacha game.

4.2 Optimality of the Whale Property Gacha Game
In this section, we will prove the optimality of the whale property gacha game, that is, the optimal

gacha game that can achieve the maximum seller’s revenue must be a whale property gacha game.

Figuring out the optimal design of the gacha game is difficult due to its complexity, especially in

designing the probability of each gacha pull. Fortunately, in Lemma 4.2, we have shown that in
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the whale property gacha game, the buyer’s behavior is only related to the expected number of

gacha pulls needed to win the gacha game with policy 𝜋∞, which can help us substantially simplify

the analysis of the gacha game. Therefore, for each whale property gacha game, we can represent

it by a fixed-probability gacha game with the same expected number of gacha pulls to win. And

we denote the winning probability of this equivalent fixed-probability gacha game as “equivalent

probability”, which is defined as follows.

Definition 4.4. (Equivalent Probability) The equivalent probability of a whale property gacha

game is defined as the 𝑝 = 1/𝐸 (𝜋∞), where 𝐸 (𝜋∞) is the expected number of gacha pulls needed to

winning the gacha game with policy 𝜋∞.

With the definition of the equivalent probability, the value in MDP at the initial state 𝑆1 for a

buyer with valuation 𝑅 and policy 𝜋∞ can be simplified as 𝑉𝜋∞ (𝑆1) = 𝑅 − 𝑐/𝑝. This implies that for

the whale property gacha game, the buyer will pull the gacha game if and only if the equivalent

probability of the game is large compared with his valuation, i.e., 𝑝 ≥ 𝑐/𝑅.
To figure out the optimal gacha game configuration, we first consider the scenario where the

buyer’s valuation follows a discrete distribution as follows:

𝑃 (𝑅 = 𝑅𝑖 ) = 𝛽𝑖 , 𝑖 = 1, 2, · · · , 𝑀,
and

∑𝑀
𝑖=1
𝛽𝑖 = 1. Without loss of generality, we assume that 𝑅1 > 𝑅2 > · · · > 𝑅𝑀 . We will first show

the optimality of the whale property gacha game with the discrete user valuation distribution and

then extend to the continuous user valuation distribution. Thus, we can prove the optimality of the

whale property gacha game with any user distribution.

Firstly, we have that the optimal whale property gacha game design with the discrete buyer’s

valuation distribution is shown as follows:

Lemma 4.5. When the buyer’s valuation follows the discrete distribution 𝑃 (𝑅 = 𝑅𝑖 ) = 𝛽𝑖 , 𝑖 =

1, 2, · · · , 𝑀 , the whale property gacha game with equivalent probability 𝑝 = 𝑝𝑖∗ can achieve the
maximum seller’s revenue 𝑐

𝑝𝑖∗

∑𝑀
𝑗=𝑖∗ 𝛽 𝑗 , where

𝑖∗ = arg max

𝑖∈{1,2,· · · ,𝑀 }

𝑐

𝑝𝑖

𝑀∑︁
𝑗=𝑖

𝛽 𝑗 , and 𝑝𝑖 =
𝑐

𝑅𝑖
(𝑐 ≤ 𝑅𝑖 ).

To investigate the general gacha game (with or without the whale property), we introduce the

definition of whale property subgame.

Definition 4.6. (Whale Property Subgame) We define the gacha subgame G(𝑖, 𝑘), (𝑖 ≤ 𝑘) as
the slice of the gacha game starting from buyer’s state 𝑆𝑖 ending at buyer’s state 𝑆𝑘 . Then a gacha

subgame G(𝑖, 𝑘) has the whale property if and only if for any buyer in the gacha game, his optimal

policy in this gacha subgame is either 𝜋𝑖−1 or 𝜋𝑘 , that is, the following condition always holds:(
∃𝑙 ∈ [𝑖, 𝑘],𝑉𝜋𝑙 (𝑆𝑖 ) ≥ 0

)
⇒

(
∀𝑗 ∈ [𝑖, 𝑘],𝑉𝜋𝑘 (𝑆 𝑗 ) ≥ 0

)
,

i.e., if it is profitable for the buyer to pull the gacha subgame at state 𝑆𝑖 , he will continue pulling

the gacha subgame until he wins or reaches the state 𝑆𝑘+1, otherwise, he will never pull.

Tackling the non-whale property gacha game is difficult, because the optimal policy of the

buyer is complicated and the buyer may quit midway. Luckily, we find that each gacha game can

be divided into several whale property subgames. Specially, the gacha pull in each round can be

considered as a whale property subgame, i.e., whether or not to pull the current round. Therefore,

we can investigate the non-whale property gacha game through its whale property subgames.

As shown in Figure 2, a gacha game G that can be divided into 𝐿 consecutive whale property

subgames, namely, G(𝑎𝑖−1 + 1, 𝑎𝑖 ), 𝑖 = 1, 2, · · · , 𝐿, where 𝑎0 = 0 and 𝑎𝐿 = ∞. Since the subgame
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Fig. 2. The non-whale property gacha game can be divided into 3 whale property subgames, where each
subgame can be represented by a fixed-probability gacha game with the corresponding equivalent probability.

G(𝑎𝑖−1 + 1, 𝑎𝑖 ) has the whale property, we can represent the subgame by a fixed-probability gacha

game with the equivalent probabilities 𝑝𝑖 . Besides, the subgame whale property guarantees that if

the buyer pulls the gacha game at the state 𝑆𝑎𝑖−1+1, he will continue pulling until he wins the gacha

game or reaches the state 𝑆𝑎𝑖+1. Then, to figure out the optimal design for the general gacha game,

we can turn to investigating its whale property subgames.

Lemma 4.7. Suppose that the buyer’s valuation follows the discrete distribution 𝑃 (𝑅 = 𝑅𝑖 ) = 𝛽𝑖 , 𝑖 =

1, 2, · · · , 𝑀 . Consider a gacha game G∗ that can be divided 𝐿(𝐿 ≤ 𝑀) whale property subgames, and
the 𝑖-th whale property subgame contains 𝑛𝑖 rounds of gacha pulls, i.e., 𝑛𝑖 = 𝑎𝑖 − 𝑎𝑖−1, 𝑛𝑖 ≥ 0, where
𝑖 = 1, 2, · · · , 𝑀 . Specially, the length of 𝑖-th subgame being 𝑛𝑖 = 0 implies that the 𝑖-th whale property
subgame is dummy. The equivalent probability of the 𝑖-th subgame is 𝑝𝑖 = 𝑐/𝑅𝑖 (𝑐 ≤ 𝑅𝑖 ) and the
lengths of these whale property subgames n = (𝑛1, 𝑛2, · · · , 𝑛𝑀 ) are

arg max

n
𝑐 ·

𝑀∑︁
𝑘=1

𝛽𝑘𝑄𝑘 (n), 𝑛𝑖 ≥ 0,∀𝑖 = 1, 2, · · · , 𝑀,

where 𝑄𝑘 (n) is the expected number of gacha pulls bought by the buyer with valuation 𝑅𝑘 in the
gacha game with the lengths of the whale property subgames n, which is formulated as follows:

𝑄𝑘 (n) =


1−(1−𝑝̃1 )𝑛1

𝑝̃1

, 𝑘 = 1,(∑𝑘
𝑖=1

(∏𝑖−1

𝑗=1
(1 − 𝑝 𝑗 )𝑛 𝑗

)
1−(1−𝑝̃𝑖 )𝑛𝑖

𝑝̃𝑖

)
, 𝑘 > 1.

Then the gacha game G∗ is optimal and can achieve the maximum seller’s revenue.

According to Lemma 4.7, we can find out the optimal design of the gacha game by turning it

into an optimization problem. And the solution of the optimization problem implies that the gacha

game G∗
has the whale property. Suppose that there exists a gacha game G′

with 𝐿(𝐿 > 1) whale
property subgames which does not have the whale property but is also optimal and can achieve

the maximum seller’s revenue. We will show that the seller’s revenue in G∗
in Lemma 4.7 is greater

than that in G′
, which will lead to the contradiction and thus prove the optimality of the whale

property gacha game. And the main result is shown in the following theorem, which still holds

when the buyer’s valuation follows the arbitrary distribution.

Theorem 4.8. The optimal gacha game that can achieve maximum seller’s revenue must be a whale
property gacha game, that is, the maximum seller’s revenue of the non-whale property gacha game is
strictly less than that of the whale property gacha game.

Compared to the whale property gacha game, the non-whale property gacha game can encourage

the buyers who have low valuation and would not conduct any gacha pull in the optimal whale

property gacha game to pull the gacha instead of leaving directly. Thus the non-whale property

helps to expand the number of participants in the gacha game. Although the non-whale property

offers advantages in terms of more participants, the buyers who will pull in the optimal whale
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property gacha game spend less money on gacha pulling, leading to a lower seller’s revenue. Indeed,

many gacha games have whale property. A recent research [26] shows that the high-spending

players in the gacha game essentially subsidize the game for other players who may spend smaller

amounts of money, or even spend no money at all, which is consistent with the theoretical result

of the whale property gacha game.

4.3 Equivalence of Gacha Game and Single-item Single-bidder Auction
In this section, we show the equivalence of the gacha game and the single-item single-bidder

auction [33] and further figure out the optimal gacha game design that can achieve the maximum

seller’s revenue. Such an equivalence reveals the corresponding revenue structure between gacha

game and auction.

Let’s recall the single-item single-bidder auction [33], where there is a bidder with his personal

valuation 𝑅 on the item in the auction and a revenue-maximum auctioneer. In the auction mecha-

nism, the auctioneer will first design an allocation rule 𝑥 (𝑏) ∈ [0, 1] and the payment rule 𝑦 (𝑏) ∈ R,
and then a rational bidder will propose his bid 𝑏 ∈ R. When the bidder proposes a bid 𝑏 ∈ R, he
needs to pay 𝑦 (𝑏) and can get the item in the auction with probability 𝑥 (𝑏). Thus, the utility of the

bidder with bid 𝑏 is 𝑢 (𝑏) = 𝑅 · 𝑥 (𝑏) − 𝑦 (𝑏). The following theorem shows the equivalence of the

gacha game and the single-item single-bidder Myerson auction with a stochastic allocation rule.

Theorem 4.9. Consider a gacha game G, which can be divided into 𝐿 consecutive whale property
subgames, namely, G(𝑎𝑖−1 + 1, 𝑎𝑖 ), 𝑖 = 1, 2, · · · , 𝐿, where 𝑎0 = 0 and 𝑎𝐿 = ∞. The gacha game
G is equivalent to the single-item single-bidder Myerson auction with the allocation rule 𝑥 (𝑏) =

𝑃succ (𝜋opt(𝑏 ) ) and the payment rule𝑦 (𝑏) = 𝐸 (𝜋opt(𝑏 ) ) ·𝑐 , where 𝑏 is the bidding value in auction, which
is equivalent to the bidder’s valuation 𝑅 due to the dominant-strategy incentive-compatible (DSIC)
property, 𝜋opt(𝑅) denotes the optimal gacha pulling policy for a buyer with valuation 𝑅 at initial state
𝑆1, which is formulated as

opt(𝑅) =


𝑎0 = 0, 𝑅 ≤ 𝐸 (𝜋𝑎

1
) ·𝑐

𝑃succ (𝜋𝑎
1
) ,

𝑎𝑖 ,
(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1

)) ·𝑐
𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1

) < 𝑅 ≤ (𝐸 (𝜋𝑎𝑖+1
)−𝐸 (𝜋𝑎𝑖 )) ·𝑐

𝑃succ (𝜋𝑎𝑖+1
)−𝑃succ (𝜋𝑎𝑖 )

,

𝑎𝐿 = ∞, 𝑅 >
(𝐸 (𝜋∞ )−𝐸 (𝜋𝑎𝐿−1

)) ·𝑐
𝑃succ (𝜋∞ )−𝑃succ (𝜋𝑎𝐿−1

),

𝑃succ (𝜋𝑘 ) = 1 − ∏𝑘
𝑗=1

(1 − 𝑝 𝑗 ) denotes the probability of winning the gacha game with policy 𝜋𝑘 , and
𝐸 (𝜋𝑘 ) denotes the expected number of gacha pulls with policy 𝜋𝑘 , which is formulated in Lemma 3.3.

The auctioneer and the bidder in the auction correspond to the seller and the buyer in the gacha

game, respectively. According to Myerson’s Lemma [33], the auction mechanism in Theorem 4.9

is dominant-strategy incentive-compatible (DSIC), and can guarantee that the bidder will report

truthfully, i.e., 𝑏 ≡ 𝑅. The buyer with his personal valuation 𝑅 will pull the gacha game with

his optimal policy 𝜋opt(𝑅) , which can provide the buyer with the probability 𝑃succ (𝜋opt(𝑅) ) to win

the gacha game at the expected cost of 𝐸 (𝜋opt(𝑅) ) · 𝑐 . Correspondingly, the truthful bidder with
valuation 𝑅 will propose a bid 𝑏 = 𝑅, and get the item with the probability 𝑥 (𝑏) and payment 𝑦 (𝑏).
The winning probability and the expected cost in the gacha game correspond to the allocation rule

and the payment rule in the auction, respectively.

With the bidder/buyer’s valuation drawn from distribution 𝐹 , according to [33], the optimal alloca-

tion rule and the payment rule in the single-item single-bidder Myerson auction that can achieve the

maximum revenue are 𝑥 (𝑏) =
{

0, 𝑏 ≤ 𝑟 ∗,
1, 𝑏 > 𝑟 ∗,

𝑦 (𝑏) =
{

0, 𝑏 ≤ 𝑟 ∗,
𝑟 , 𝑏 > 𝑟 ∗,

where 𝑟 ∗ = arg max𝑟 𝑟 · (1−𝐹 (𝑟 ))

is the reserved price set by the auctioneer/seller. This optimal auction mechanism corresponds to
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the gacha game with 𝐿 = 1 whale property subgame in Theorem 4.9. This implies the optimality

of the whale property gacha game, which is consistent with Theorem 4.8. And the optimal gacha

game design is shown in the following theorem.

Theorem 4.10. The optimal gacha game that can achieve the maximum seller’s revenue should
have whale property and satisfy the following condition:

𝐸 (𝜋∞) · 𝑐 = 𝑟 ∗ = arg max

𝑟
𝑟 · (1 − 𝐹 (𝑟 )),

where 𝑐 is the cost of each gacha pull, 𝐸 (𝜋∞) is the expected number of gacha pulls to win the gacha
game with policy 𝜋∞, 𝑟 ∗ is the optimal reserved price in the single-item single-bidder Myerson auction.

Theorem 4.10 implies that the maximum seller’s revenue in the gacha game is equivalent to

that in the single-item single-bidder Myerson auction. The optimality of the whale property gacha

game revealed in Theorem 4.8 and Theorem 4.10 is consistent with the optimality of the “take-it-

or-leave-it” (non-haggling) strategy on one good [37]. This finding provides a practical insight for

the gacha game design and explains the popularity of whale property design in many gacha games.

Besides, we will show that with budget constraints, the gacha game can achieve a higher seller’s

revenue than the “take-it-or-leave-it” selling strategy.

For the “take-it-or-leave-it” strategy, a buyer will buy the item only when the price of the item

does not exceed his valuation and his budget. While in the gacha game, the buyer with a high

valuation will continue purchasing the gacha pulls until he either wins the gacha game or exhausts

his budget. Therefore, selling in the gacha game is quite robust to random fluctuations in buyers’

budgets. Specifically, for a buyer with budget 𝐵, he can buy at most ⌊ 𝐵
𝑐
⌋ gacha pulls, where 𝑐 is the

price for each gacha pull. Thus, the buyer’s policy can only be 𝜋𝑖 , 𝑖 = 0, 1, · · · , ⌊ 𝐵
𝑐
⌋. Then a buyer

with budget 𝐵 will pull the gacha game if and only if ∃0 < 𝑘 ≤ 𝐵
𝑐
, 𝑉𝜋𝑘 (𝑆1) ≥ 0.

Proposition 1. With budget constraints, the whale property gacha game can achieve a higher
seller’s revenue than the “take-it-or-leave-it” strategy.

The following example demonstrates the advantage of the gacha game when facing budget-

constrained buyers. The detailed calculation of the following example is shown in Appendix E

Example 1. There is a buyerwho has the valuation of 100 and his budget𝐵 follows the distribution
that 𝑃 (𝐵 = 50) = 0.5, 𝑃 (𝐵 = 100) = 0.5. The maximum seller’s revenue achieved by the “take-it-or-

leave-it” strategy is 50, whereas the fixed-probability gacha game with the probability being 0.01

and the price for each gacha pull being 1, can achieve the seller’s revenue of 51.448. This is because

the buyer in the gacha game will continue buying the gacha pulls until he either wins the game or

exhausts his budget, while in the “take-it-or-leave-it” selling, only the buyer with a larger budget

than the selling price will buy the item. Therefore, the gacha game can help the seller to achieve a

higher revenue from the buyers with small budgets.

5 MULTI-ITEM GACHA GAME
In this section, we mainly focus on the whale property gacha game due to its optimality and

popularity, and explore the multi-item gacha game, which includes multiple phases and each phase

contains exactly one item. The buyer can play the gacha game in each phase. Once the buyer wins

the gacha game, he can get the corresponding item and reward in that phase. We mainly focus on

two popular and common types of the multi-item gacha games, namely, the sequential multi-item

gacha game and the banner-based multi-item gacha game, which are classified based on how their

phase ends. The sequential multi-item gacha game will end a phase and enter the next phase only

when the buyer wins the gacha game once. The banner-based multi-item gacha game allows buyer’s

opt-out, and will end a phase and enter the next phase when the buyer wins the gacha game once
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or chooses to opt-out. The flexibility of the opt-out provision makes the banner-based gacha game

distinguished from the sequential gacha game.

5.1 Sequential Multi-Item Gacha Game
Sequential multi-item gacha game is widely adopted in many online video games, which can

encourage the players to pull and win the gacha game more than once. In this section, we consider

a multi-item sequential gacha game with 𝐾 items (𝐾 phases), where the buyer’s valuation for the

𝑘-th item in the 𝑘-th phase is 𝑅𝑘 (𝑘 ≤ 𝐾). When the buyer wins the gacha game in the 𝑘-th phase,

he will obtain the corresponding reward 𝑅𝑘 and enter the next phase, i.e., (𝑘 + 1)-th phase (𝑘 < 𝐾 )

or the game ends (𝑘 = 𝐾). That is, the buyer will sequentially get the reward 𝑅1, 𝑅2, · · · , 𝑅𝑘 if he
has won the gacha game 𝑘 times (𝑘 ≤ 𝐾 ).

In this section, we mainly focus on the reset-after-winning mechanism and the succeed-after-

winning mechanism in the sequential multi-item gacha game. For the sequential gacha game with

the reset-after-winning mechanism, the buyer’s state in the gacha game will be reset whenever the

buyer wins the gacha game and enters the next phase. Specifically, if a buyer wins the gacha game

at state 𝑆𝑘 , the reset-after-winning mechanism will reset the buyer’s state, i.e., the buyer will be at

state 𝑆1 in the next phase. As an opposite mechanism, the succeed-after-winning mechanism will

not reset the buyer’s state. Specifically, if a buyer wins the gacha game at state 𝑆𝑘 , he will be at

state 𝑆𝑘+1 in the next phase.

We now investigate the buyer’s behavior in the whale property sequential multi-item gacha

game with the reset-after-winning mechanism, which is shown in the following proposition.

Proposition 2. For the whale property sequential multi-item gacha game with the reset-after-
winning mechanism, the buyer will continue pulling the gacha until he has won 𝑘∗ times, where

𝑘∗ = arg max

𝑘=0,1,2,· · · ,𝐾

{(
𝑘∑︁
𝑗=1

𝑅 𝑗

)
− 𝑘𝐸 (𝜋∞) · 𝑐

}
. (1)

Specially, 𝑘∗ = 0 implies that the buyer will never pull the gacha game. Here 𝐸 (𝜋∞) denotes the
expected number of gacha pulls needed to win the gacha game once, which is formulated in Lemma
3.3, and 𝑐 denotes the price of each gacha pull.

We next investigate the buyer’s behavior in the whale property sequential gacha game with

the succeed-after-winning mechanism. Compared to the gacha game with the reset-after-winning

mechanism, the buyer’s behavior in the gacha game with the succeed-after-winning mechanism is

more complicated. This is due to the fact that the expected cost for every win in the gacha game

varies and is greatly dependent on the buyer’s current state. As a result, throughout the gacha

pulling process, the buyer will make a dynamic choice, as illustrated by the following proposition.

Proposition 3. For the whale property sequential multi-item gacha game with the succeed-after-
winning mechanism, the buyer that has won the gacha game 𝑘 times (𝑘 = 0, 1, · · · , 𝐾 − 1), will pull
the gacha at state 𝑆𝑖 if and only if

max

𝑡=1,2,· · · ,𝐾−𝑘

©­«
𝑘+𝑡∑︁
𝑗=𝑘+1

𝑅 𝑗
ª®¬ − 𝐻 (𝑡, 𝑖) · 𝑐

 ≥ 0,

where 𝐻 (𝑡, 𝑖) denotes the expected number of gacha pulls needed to win the gacha game 𝑡 more times
when the buyer is at state 𝑆𝑖 , which can be recursively calculated as follows:

𝐻 (𝑡, 𝑖) =
{∑∞

𝑗=𝑖 𝑝 𝑗
∏𝑗−1

𝑡=𝑖
(1 − 𝑝𝑡 ) · ( 𝑗 − 𝑖 + 1), 𝑡 = 1,∑∞

𝑗=𝑖 𝑝 𝑗
∏𝑗−1

𝑡=𝑖
(1 − 𝑝𝑡 ) · ( 𝑗 − 𝑖 + 1 + 𝐻 (𝑡 − 1, 𝑗 + 1)), 𝑡 > 1,

(2)
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where 𝑝𝑖 is the probability to win the gacha game at state 𝑆𝑖 .

Intuitively, in the gacha game with non-decreasing probability, resetting the buyer’s state when-

ever the buyer wins the gacha game can help the seller to achieve a higher revenue because the

buyers need to take more gacha pulls to win the game again. While the succeed-after-winning

mechanism seems to benefit the buyer but harm the seller’s revenue because the buyer can take

fewer gacha pulls to win the gacha game after he has won the gacha game. Indeed, many online

gacha games with non-decreasing probability and pity system such as “Genshin Impact” adopt the

reset-after-winning mechanism. However, we present the following counterintuitive result.

Insight 1. The succeed-after-winning mechanism can achieve a higher seller’s revenue compared
to the reset-after-winning mechanism in the sequential multi-item gacha game.

Here we show an example to support the counterintuitive finding above.

Example 2. Suppose that there are two items in the sequential gacha game, i.e., 𝐾 = 2. The

buyer’s valuations for these two items are independently and identically distributed (i.i.d.), and

follow the uniform distribution [0, 1]. By separately selling these two items at the same price, the

maximum seller’s revenue is 0.5. With the reset-after-winning mechanism, the maximum seller’s

revenue that the sequential gacha game can achieve is 0.516. While for the sequential gacha game

with the succeed-after-winning mechanism and pity system where 𝑁 = 100, 𝑝𝑖 = 0.172,∀𝑖 < 𝑁 and

𝑃𝑁 = 1 and the price of the gacha pull 𝑐 = 0.01, the seller’s revenue is 0.5218.

Reasoning. With the reset-after-winning mechanism, the expected cost for each win of the

gacha game remains the same. While with the succeed-after-winning mechanism, the expected

cost for each win of the gacha game varies. The varying cost makes it possible to achieve a higher

seller’s revenue. In Example 2, the expected cost for winning the second item is lower than the

expected cost for winning the first item due to the pity system. The lower cost of the second item

attracts the buyer to pull the gacha game, which makes it possible to increase the seller’s revenue.

We next investigate a special asymptotic scenario, where there are infinite number of items, and

the buyer’s valuation of each item is i.i.d. random variable with mean 𝜇 and variance 𝜎2
.

Theorem 5.1. For the sequential multi-item gacha game with infinite items, and the buyer’s
valuation of each item follows the identical and independent distribution with mean 𝜇 and variance
𝜎2, the whale property sequential multi-item gacha game with the reset-after-winning mechanism can
achieve the asymptotic optimality on seller’s revenue, i.e.,

lim

𝐾→∞

𝑐 · E(# of gacha pulls purchases)
𝐾

= 𝜇,

where 𝑐 ·E(# of gacha pulls purchases)
𝐾

denotes the normalized seller’s revenue, 𝑐 is the price of each gacha
pull and 𝐾 is the number of items in the gacha game.

Theorem 5.1 shows that the reset-after-winning mechanism is asymptotically revenue-optimal,

which implies that the reset-after-winning mechanism in the sequential multi-item gacha game

can achieve a satisfactory seller’s revenue. This explains the popularity and widespread use of the

reset-after-winning mechanism in the gacha game. Besides, compared to the bundle selling [5],

which has been shown to be asymptotically revenue-optimal, the gacha game is friendlier to the

buyers that prefer smaller purchases or have a smaller budget, and can achieve a higher seller’s

revenue when considering buyer’s budget. This is because the bundle strategy requires the buyer

either to purchase all of the items or none of them, whereas the gacha game even allows the buyer

to buy just one gacha pull.
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5.2 Banner-based Multi-Item Gacha Game
In this section, we explore another multi-item gacha game named banner-based multi-item gacha

game. Due to the asymptotic optimality and popularity of the reset-after-winning mechanism, we

assume that the banner-based gacha game discussed in this paper adopts the reset-after-winning

mechanism and the buyer’s state will be reset whenever he wins.

The only difference between banner-based and previous sequential gacha game is that banner-

based gacha game allows the buyer’s opt-out in some banners (phases). Therefore, the buyer can

choose to pull in some of the banners without the consecutive requirement. The banner-based

multi-item gacha game is also widely adopted in many online video games such as “Genshin Impact”.

In these banner-based gacha games, specific items can only be acquired during a specific period of

time. This event time period is referred to as a “banner” and each banner refers to a phase in the

multi-item gacha game. Each banner contains a specific item and can be considered as a single-item

gacha game. After a period of time, the next banner will replace the current one. Compared to

other probabilistic selling mechanisms, such as loot box, the banner-based gacha game is more

suitable for adding new items. Besides, empirical results [41] show that this limited-time gacha

can contribute to the seller’s revenue growth. This explains why banner-based gacha game design

gains increasing popularity in a variety of online video games.

Here, we consider a banner-based gacha game with 𝐾 banners, where the buyer’s valuation of

the item in the 𝑘-th banner is denoted as 𝑅𝑘 . We focus on the reset-after-opt-out mechanism and

the succeed-after-opt-out mechanism in the banner-based gacha game. With the reset-after-opt-out

mechanism, the buyer’s state will be reset at the beginning of the next banner when the buyer

chooses to opt-out. Specifically, for a buyer that has pulled 𝑖 gacha pulls and is currently at state

𝑆𝑖+1, if he stops pulling in the current banner and chooses to opt-out for the next banner, he will be

at state 𝑆1 in the next banner. As an opposite mechanism, the succeed-after-opt-out mechanism

will carry the buyer’s state from one banner to another, that is, for a buyer that is currently at state

𝑆𝑖+1, if he stops pulling in the current banners and chooses to opt-out for the next banner, he will

be at state 𝑆𝑖+1 in the next banner.

We next investigate the relation among the reset-after-opt-out mechanism and the succeed-

after-opt-out mechanism in the banner-based gacha game, and the separate selling with several

independent single-item gacha games. We can find that the banner-based gacha game with the reset-

after-opt-out mechanism is equivalent to the separate selling with several independent single-item

gacha games, because the buyer’s utility and behavior in one banner will not affect those in another

banner. However, in the banner-based gacha game with the succeed-after-opt-out mechanism, the

buyer may adopt more sophisticated gacha pulling strategies to maximize his utility. For instance,

the buyer may consider pulling some gacha pulls in one banner and then stop, carrying his state to

the next banner. The following theorem shows the equivalence of the banner-based gacha gamewith

the reset-after-opt-out mechanism, the banner-based gacha game with the succeed-after-opt-out

mechanism, and the separate selling with several independent single-item gacha games.

Theorem 5.2. The banner-based gacha game with the reset-after-opt-out mechanism, the banner-
based gacha game with the succeed-after-opt-out mechanism, and the separate selling with several
independent single-item gacha games are equivalent, i.e., the behaviors of the rational buyers and the
seller’s revenues in these gacha games are the same.

Theorem 5.2 shows the interesting results that the banner-based gacha game works like the

several independent gacha games. We can find that the succeed-after-opt-out mechanism in the

banner-based multi-item gacha game is friendly to the buyers since the buyers can quit midway in

the current banner and remain their states to the banner that they want to pull. In the gacha game

with non-decreasing probability, this inherited state can help the buyers to win the gacha game
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with fewer gacha pulls. Besides, when considering buyer’s time-varying budget constraint, the

succeed-after-opt-out mechanism in the banner-based gacha game can help the seller to achieve a

higher revenue. Here we show an example to support this claim.

Example 3. Consider that buyer is budget-constrained and get some periodical income 𝐼 = 50 in

the time frame of each banner, such as monthly salary. There are two banners in this game and the

buyer’s valuation of the reward in these banners are 𝑅1 = 100, 𝑅2 = 50. The price for each gacha

pull is 𝑐 = 1. Consider the banner-based gacha game where 𝑁 = 100, 𝑝𝑖 = 0.01,∀𝑖 < 𝑁 and 𝑝𝑁 = 1.

• With the reset-after-opt-out mechanism, the buyer will pull in the first banner and will never

pull in the second banner. In this case, the seller’s expected revenue is 39.499.

• With the succeed-after-opt-out mechanism, the buyer will first pull in the first banner. If the

buyer exhausts his budget but fails to win in the first banner, the buyer’s state will be inherited

to the second banner, which will lower the cost to win in the second banner. Therefore, the

buyer will pull in the second banner. In this case, the seller’s expected revenue is 63.397.

Theorem 5.2 and the discussion above demonstrate the efficiency of the succeed-after-opt-out

mechanism in banner-based multi-item gacha game, and provide a theoretical justification for its

widespread use in the online video games.

6 SUBSIDIES AND GRINDING BEHAVIOR IN GACHA GAME
In this section, we investigate the subsidies in the gacha game, where the seller will provide free

gacha pulls to the buyer as subsidies. This is a common practice in many online video games

[42]. Specially, players in online video games can obtain some free gacha pulls by finishing some

commissions, which motivates the players to play the game. The additional subsidies allow the

seller to further steer buyer’s behavior, especially for the scenarios where the game configuration

is not frequently changed.

Note that subsidies in the gacha game are different from the traditional subsidization where the

subsidy serves as a price discount [13]. With free gacha pulls, the buyers may get the reward of

the gacha game for free without buying any gacha pulls from the seller. This property makes the

subsidies in the gacha game more complicated and may result in buyer’s grinding behavior.

6.1 Subsidies in Single-Item Gacha Game
We first explore the subsidies in the single-item gacha game, which can demonstrate how the

subsidies affect both the buyer’s behavior and the seller’s revenue.

Suppose that buyer is subsidized with𝑚 free gacha pulls at the beginning of the gacha game. If

the buyer does not win the gacha game within𝑚 gacha pulls, he needs to buy the gacha pulls from

the seller to continue pulling the gacha game, from which the seller can obtain revenue by selling

the gacha pulls.

6.1.1 Subsidies in the Fixed-Probability Gacha Game. We consider the subsidies in the fixed-

probability gacha game and show that subsidies degrade the seller’s revenue. This is because

subsidies in the fixed-probability gacha game can not motivate the buyer to buy more gacha pulls.

Theorem 6.1. The subsidies in fixed-probability gacha game always degrade the seller’s revenue
compared to the gacha game without any subsidies.
6.1.2 Subsidies in Varying-Probability Gacha Game with the Whale Property. We now consider the

subsidies in the varying-probability gacha game with the whale property. The following theorem

shows the buyer’s behavior and seller’s revenue with subsidies in the varying-probability gacha

game with the whale property.

Theorem 6.2. For a whale property gacha game, where the winning probability at state 𝑆𝑖 is 𝑝𝑖
and the cost for each gacha pull is 𝑐 , if𝑚 free gacha pulls are subsidized in this gacha game, only the
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buyer with valuation greater than 𝜑𝑠 (𝑚) =
(∑∞

𝑖=𝑚+1
(𝑖 −𝑚)𝑝𝑖

∏𝑖−1

𝑗=𝑚 (1 − 𝑝 𝑗 )
)
· 𝑐 will buy the gacha

pulls when they run out all the free gacha pulls, and the seller’s revenue with𝑚 free gacha pulls is

𝑈𝑠 (𝑚) =
( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=1

(1 − 𝑝 𝑗 )
)
· 𝑐 ·

(
1 − 𝐹

(( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=𝑚+1

(1 − 𝑝 𝑗 )
)
· 𝑐

))
.

When arg max𝑈𝑠 (𝑚) > 0, subsidies can improve the seller’s revenue.

Consider a whale property gacha game with increasing probability, 𝜑𝑠 (𝑚) in Theorem 6.2 is

monotonically decreasing with the number of free gacha pulls𝑚. This implies that when the buyer’s

valuation is too low, subsidies can motivate the buyers to buy the gacha pulls, and thus improve the

seller’s revenue. Besides, compared to subsidies in the fixed-probability gacha game in Theorem 6.1,

subsidies in the varying-probability gacha game make the sellers more controllable on the buyer’s

behavior, and can help to improve the seller’s revenue. This is one of the factors contributing to

the current widespread use of the varying-probability mechanism in the gacha games [50].

6.2 Subsidies and Grinding Behavior in Banner-based Multi-Item Gacha Game
In this section, we study the subsidies in the banner-based multi-item gacha game, where the

subsidized free gacha pulls are available through all banners. Following the assumption in Section

5.2, we assume that the banner-based gacha game adopts the reset-after-winning mechanism and

the buyer’s state will be reset whenever he wins. We show that these subsidies will lead to the

buyer’s grinding behavior, that is, the buyer may accumulate the subsidized free gacha pulls, which

is shown in the following theorem.

Theorem 6.3. Consider a banner-based multi-item gacha game where there are 𝐾 banners, and the
buyer’s valuations on the items in these banners are 𝑅1, 𝑅2, . . . , 𝑅𝐾 . Suppose the buyer is currently at
the 𝑖-th banner with𝑚 free gacha pulls subsidized by the seller. There are three possible scenarios:

• If 𝑅𝑖 ≥ 𝐸 (𝜋∞) · 𝑐 , the buyer will use his free gacha pulls to pull the gacha game in this banner,
and if he uses out all the free gacha pulls, he will buy the gacha pulls until he wins in this banner.

• If 𝑅𝑖 < 𝐸 (𝜋∞) · 𝑐 , and there exists a banner 𝑗 (𝑖 < 𝑗 ≤ 𝐾), such that 𝑅 𝑗 ≥ 𝐸 (𝜋∞) · 𝑐 , then the
buyer would not buy any gacha pull before the 𝑗-th banner. In the 𝑗-th banner, he will first try
to use all free gacha pulls, and then start to buy gacha pulls, until he finally wins the game.

• If 𝑅 𝑗 < 𝐸 (𝜋∞) · 𝑐,∀𝑗 ∈ [𝑖, 𝐾], let 𝑘∗ = arg max𝑘∈[𝑖,𝐾 ] 𝑅𝑘 , then the buyer would not buy any
gacha pull before the 𝑘∗-th banner, and will use the free gacha pulls to pull in the 𝑘∗-th banner
until he wins. If 𝑅𝑘∗ < 𝐸 (𝜋∞, 𝑆𝑚+1) · 𝑐 , when the buyer uses out all the free gacha pulls in the
𝑘∗-th banner, he will stop pulling the gacha. Otherwise, 𝑅𝑘∗ ≥ 𝐸 (𝜋∞, 𝑆𝑚+1) · 𝑐 , the buyer will
buy the gacha pulls and pull in the 𝑘∗-th banner until he wins.

Here 𝐸 (𝜋∞) denotes the expected number of gacha pulls needed to win the gacha game, and 𝐸 (𝜋∞, 𝑆𝑚+1)
denotes the expected number of gacha pulls needed to win the gacha game when the buyer is at state
𝑆𝑚+1, which are formulated in Lemma 3.3.

Theorem 6.3 shows that in banner-based multi-item gacha games, subsidizing the buyer with

free gacha pulls may not encourage the buyer to buy more gacha pulls. Instead, the buyer may

accumulate the subsidized free gacha pulls and only buy some gacha pulls on some most valuable

banners. This grinding behavior indeed harms the seller’s revenue. Here we illustrate the buyer’s

grinding behavior in the following example.

Example 4. Consider a banner-based game with 2 banners. The buyer’s valuations of the items

in these 2 banners are 𝑅1 = 50 and 𝑅2 = 100. Each banner is a gacha game where 𝑁 = 100,

𝑝𝑖 = 0.01,∀𝑖 < 𝑁 and 𝑝𝑁 = 1. According to Theorem 5.2, without any subsidies, the buyer will only

pull in the second banner, which will lead to the expected seller’s revenue of 63.397. If the seller
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subsidizes the buyer as it does in the single-item gacha game, according to Theorem 6.2, the seller

should give the buyer 32 free gacha pulls in the first banner and no free gacha pull in the second

banner, assuming that these subsidies will encourage the buyer to pull in the first banner. However,

Theorem 6.3 shows that a rational buyer will accumulate these subsidies and only buy the gacha

pull in the second banner, resulting in the lower expected seller’s revenue of 35.895. In this case,

the subsidies lead to the buyer’s grinding behavior and harm the seller’s revenue.

Grinding behavior is prevalent in many free-to-play video games [45], which brings challenges

for game subsidy design. To mitigate the negative impact of the grinding behavior on the seller’s

revenue, the seller should carefully design the order of the banner in the multi-item gacha game.

As shown in the example above, swapping those two banners can mitigate the grinding problem.

Besides, the seller can keep the incoming banner as a secret. Without knowing the details of the

incoming banners, the buyer can not make a future plan, which can also mitigate the grinding

problem. This is also a common tactic for video game firms. Figuring out the optimal game design

with the subsidy scheme in the banner-based multi-item gacha game can be future work.

7 CASE STUDY: BLOCKCHAIN MINING AS A GACHA GAME
There are a wide range of potential applications of the gacha games in business management and

social life, such as license plate lottery and probabilistic selling [30, 39, 46]. In this section, as a

case study, we illustrate the interesting linkage between the gacha game model and the blockchain

mining mechanisms. With such a correspondence established, the results derived in gacha game

model (and possibly, results from a large body of literature in auction theory, as we have shown a

simple relationship between gacha game and auction) could shed lights on the design of blockchain

systems.

Blockchain is a distributed ledger with a sequence of blocks, which contain the transaction records

[32]. The blocks in the blockchain are stochastically generated by the miners or the validators

based on the consensus algorithms. The miners/validators should invest their computing power or

stake their coins to win the right of generating a block with a certain probability. Once a block is

generated, the corresponding miner/validator can obtain the block reward, which motivates the

miners/validators to maintain the system consensus. Here, we investigate the blockchain systems

with the two most common consensus algorithms: Proof-of-Work (PoW) [34] and Proof-of-Stake

(PoS) [38] in detail and show that the blockchain system can be modeled as the gacha game, which

is shown in Table 1. The miners in PoW blockchain or the validators in the PoS blockchain can be

modeled as the buyers in the gacha game. And the blockchain system designer is modeled as the

seller in the gacha game, who aims to maximize security assurance measured by the amount of the

invested computing power in the PoW blockchain or invested coins in the PoS blockchain.

Gacha Game

Blockchain

PoW Blockchain PoS Blockchain

buyer miner validator

seller system designer

gacha reward block reward

gacha pull hash operation with nonce hash operation with time

winning probability probability that hash value hits the target

price of each gacha pull computing cost for hash operation staking cost at time

seller’s revenue

system’s security guarantee

invested computing power invested coins

optimal configuration mining difficulty adjustment

gacha game type fixed-probability gacha game gacha games in Table 2

Table 1. Blockchain as a gacha game
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7.1 Proof-of-Work Blockchain as a Gacha Game
We first show that the blockchain system with Proof-of-Work (PoW) can be modeled as a fixed-

probability gacha game. In the PoW blockchain, to generate a new block, a miner needs to find a

nonce such that the hash value is less than 𝐷 , where 𝐷 is the pre-determined mining difficulty. The

PoW blockchain can be modeled as a gacha game, where the miners act as the gacha game buyers;

each hash operation is modeled as one gacha pull; the computing cost for each hash operation

can be considered as the price of one gacha pull; when the miner finds a nonce such that the hash

value is less than 𝐷 , the miner can generate a new block and obtain the block reward 𝑅, which

is equivalent to the case that the buyer wins the gacha game; and the probability of creating a

valid block of each hash operation is 𝑝 = 𝐷/2
𝑀
, where𝑀 is the number of bits for the hash value,

and this probability 𝑝 corresponds to the winning probability in the gacha game. If the blockchain

designer wants to maximize the security guarantee in the blockchain system, where the security

guarantee in the PoW blockchain can be measured by the amount of invested computing power, he

needs to figure out the optimal design as shown in Theorem 4.10. Since the block reward and the

cost of one hash operation change over time, the blockchain designer needs to adjust the probability

𝑝 to achieve optimality. Generally, 𝑝 is adjusted by the mining configuration 𝐷 , which is exactly

the mining difficulty adjustment in most of the PoW blockchains.

7.2 Proof-of-Stake Blockchain as a Gacha Game

Gacha Game coins as stake

coin age as stake

linear coin age Reddcoin (PoSV)

gacha game type

fixed-probability

gacha game

gacha game with

increasing probability

non-whale property

gacha game

whale property ! ! #
reset-after-winning mechanism

in sequential gacha game

#
coin age resets to 0 when

the validator finds a new block

succeed-after-opt-out mechanism

in banner-based gacha game

#
coin age does not reset to 0

when others find a new block

Table 2. PoS blockchain as a gacha game

In the PoS protocol, the validators of the blockchains create a valid block if a candidate block

satisfies the condition that Hash(time, ...) < 𝐷 · stake where time represents the timestamp when

the candidate block is generate, 𝐷 is the pre-determined mining difficulty and stake is the value of

stakes possessed. The exact definition of stake varies from implementation to implementation.

The PoS blockchain can be modeled as a gacha game, where the validators act as the gacha game

buyers; each hash operation at each time is modeled as one gacha pull; the staking cost per unit

can be considered as the price of one gacha pull 𝑐; when the hash value of the candidate block is

less then 𝐷 · stake at a certain time, the validator can generate a new block and obtain the block

reward 𝑅, which is equivalent to the case that the buyer wins the gacha game; and the probability

of creating a valid block is 𝑝 = (𝐷 · stake)/2
𝑀
, where𝑀 is the number of bits for the hash value,

and this probability 𝑝 can be modeled as the probability of winning the gacha game. The system

designer of the PoS blockchain acts as the seller in the gacha game and wants to maximize the

security guarantee, which can be measured by the amount of invested tokens in the PoS blockchain.

We further illustrate such correspondence by the following typical PoS blockchains.

7.2.1 PoS Blockchains with Tokens as Stake. For the PoS blockchains that define the stake as the
number of tokens, such as Blackcoin [43], the probability that a validator creates a block at each

time is the same. These PoS blockchains can be modeled as the fixed-probability gacha games.

7.2.2 PoS Blockchains with “Coin Age” as Stake. Some blockchains such as Peercoin [25] define a

validator’s state as “coin age”, which is the product of the number of tokens and the amount of time
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that a single validator has held them. Therefore, the probability that a validator creates a valid block

is increasing monotonically. Specifically, the probability of winning the gacha (creating a valid

block) at the 𝑖-th gacha pull (hash operation at time 𝑖) is 𝑝𝑖 = min

{
𝐷 ·#𝑡𝑜𝑘𝑒𝑛𝑠 ·𝑖

2
𝑀 , 1

}
, where #𝑡𝑜𝑘𝑒𝑛𝑠

denotes the number of tokens owned by the validator. We can model these PoS blockchains with

“coin age” as stake as the gacha games with increasing probability, where the coin age works like

the pity counter in the pity system [50]. The increasing probability in the blockchain can resolve

the problem that some unlucky validators may not produce blocks in a long time and reduce the

variance of validators’ income.

7.2.3 Multi-item Gacha Game in PoS Blockchain. The generation process of each block can be

modeled as a single-item gacha game, and the whole block chain generation process can be modeled

as a multi-item gacha game. In most of the PoS blockchains with “coin age”, the coin age of

the validator will be accumulated until he successfully generates a new block. This is similar to

the succeed-after-opt-out mechanism in the banner-based gacha game in Section 5.2, where the

behavior that the buyer chooses to opt-out in the banner-based gacha game corresponds to the

scenario that other validators find a new block in the PoS blockchain, and the buyer’s state will

be carried to the next banner. Besides, once the validator generates a new block, his accumulated

coin age will be reset to 0, which is similar to the reset-after-winning mechanism in the sequential

gacha game in Section 5.1.

7.2.4 PoS Blockchain as a non-Whale Property Gacha Game. Reddcoin is a special PoS blockchain,

whose consensus protocol is Proof of Stake Velocity (PoSV) [36], a variation of the traditional PoS.

According to the source code of Reddcoin (line 66-85 in file “reddcoin/src/kernal.cpp”) [3], the coin

age weight in Reddcoin is calculated as follows:

weight =

{
−0.00408163 ∗ time

3 + 0.05714286 ∗ time
2 + time, time ≤ 7days,

8.4 ∗ log(time) − 7.94564525, otherwise.
(3)

Figure 3 (a) shows the accumulated weight of the coin age in Reddcoin, which is calculated based

on equation (3). We can find that with the non-linear accumulation of coin age, the coin age

in Reddcoin is accumulated at a higher rate than in traditional PoS initially, and the marginal

accumulation decreases over time. Figure 3 (b) shows the expected reward per day in Reddcoin and

traditional PoS. By modeling the Reddcoin as a gacha game, with each day staking as a gacha pull,

the expected reward per day in Reddcoin is consistent with 𝑝𝑖𝑅 in the gacha game model. Note

that in the traditional PoS with coin age, the normalized expected reward per day is 1 [2], which

can be considered as the cost 𝑐 = 1 in the gacha game model. With the expected reward per day

𝑝𝑖𝑅 and the cost 𝑐 , we can apply the gacha game model to analyze the Reddcoin system. According

to Lemma 3.1 and Lemma 3.2, the optimal policy for the validator in Reddcoin (the buyer in the

gacha game) is 𝜋13, which implies that Reddcoin is a non-whale property gacha game. Figure 3

(c) shows the value 𝑉𝜋13
(𝑆𝑖 ) in MDP of the gacha game model of Reddcoin. The rational validator

should stake to the system initially, and then update his staking after 14 days. This theoretical

analysis is highly consistent with the staking phenomenon in Reddcoin, where staking regularly

for 2 weeks (14 days) can achieve the highest validator’s revenue [2]. Recall that the non-whale

property gacha game can not achieve the highest seller’s revenue but can encourage more people

to join the game. This is also the core idea of Reddcoin. Reddcoin encourages users to use the coins

instead of staking them, which can promote a better coin economy by increasing the participation

of coin holders [36].

8 CONCLUSION
In this work, we propose a mathematical model for the gacha game, where the sequential decision

of the buyer is modeled as a Markov Decision Process (MDP). We introduce the definition of whale
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property and further show the optimality of the whale property gacha game and the equivalence

of the gacha game and the single-item single-bidder Myerson auction. We also provide an optimal

gacha game configuration that can achieve the maximum seller’s revenue. Besides, we further

explore the multi-item gacha games, including the sequential multi-item gacha game and the

banner-based multi-item gacha game. Moreover, we discuss the subsidies in the gacha game and

model the buyer’s grinding behavior with subsidies. Finally, we offer a case study of the gacha

game on the blockchain system.
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A PROOFS IN SECTION 3
Lemma 3.1 The value of MDP of the policy 𝜋𝑘 at state 𝑆𝑖 is

𝑉𝜋𝑘 (𝑆𝑖 ) =
(
𝑝𝑖 +

𝑘∑︁
𝑚=𝑖+1

𝑝𝑚

𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑅 −

(
1 +

𝑘∑︁
𝑚=𝑖+1

𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑐, ∀𝑖 ≤ 𝑘

=

(
1 −

𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑅 −

(
𝑝𝑖 +

𝑘∑︁
𝑚=𝑖+1

(𝑚 − 𝑖 + 1)𝑝𝑚
𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 ) + (𝑘 − 𝑖 + 1)
𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑐

Proof. According to the MDP, we have

𝑉𝜋𝑘 (𝑆𝑘 ) = 𝑝𝑘𝑅 − 𝑐,

and

𝑉𝜋𝑘 (𝑆𝑖 ) = 𝑝𝑖𝑅 − 𝑐 + (1 − 𝑝𝑖 )𝑉𝜋𝑘 (𝑆𝑖+1), 𝑖 < 𝑘,
Recursively, we have

𝑉𝜋𝑘 (𝑆𝑘−𝑖 ) = 𝑝𝑘−𝑖𝑅 − 𝑐 +
𝑖−1∑︁
𝑚=0

(𝑝𝑘−𝑚𝑅 − 𝑐)
𝑘−𝑚−1∏
𝑗=𝑘−𝑖

(1 − 𝑝 𝑗 ).

Therefore we have

𝑉𝜋𝑘 (𝑆𝑖 ) = 𝑝𝑖𝑅 − 𝑐 +
𝑘−𝑖−1∑︁
𝑚=0

(𝑝𝑘−𝑚𝑅 − 𝑐)
𝑘−𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )

= 𝑝𝑖𝑅 − 𝑐 +
𝑘∑︁

𝑚=𝑖+1

(𝑝𝑚𝑅 − 𝑐)
𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )

=

(
𝑝𝑖 +

𝑘∑︁
𝑚=𝑖+1

𝑝𝑚

𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑅 −

(
1 +

𝑘∑︁
𝑚=𝑖+1

𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
𝑐, ∀𝑖 ≤ 𝑘.

To prove the lemma, we only need to prove the following two mathematical claims:

Claim 1:
(
𝑝𝑖 +

∑𝑘
𝑚=𝑖+1

𝑝𝑚
∏𝑚−1

𝑗=𝑖 (1 − 𝑝 𝑗 )
)
=

(
1 − ∏𝑘

𝑗=𝑖 (1 − 𝑝 𝑗 )
)
.

Proof 1: For convenience, we denote that 𝑝𝑖 = 1 − 𝑝𝑖 . Then we have(
𝑝𝑖 +

𝑘∑︁
𝑚=𝑗+1

𝑝𝑚

𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
+ (1 − 𝑝𝑘 )

𝑘−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )

=𝑝𝑖 + 𝑝𝑖+1𝑝𝑖 + 𝑝𝑖+2𝑝𝑖 ¯𝑝𝑖+1 + · · · + 𝑝𝑘𝑝𝑖 ¯𝑝𝑖+1 · · · ¯𝑝𝑘−1 + 𝑝𝑘𝑝𝑖 ¯𝑝𝑖+1 · · · ¯𝑝𝑘−1

=𝑝𝑖 + 𝑝𝑖+1𝑝𝑖 + 𝑝𝑖+2𝑝𝑖 ¯𝑝𝑖+1 + · · · + 𝑝𝑖 ¯𝑝𝑖+1 · · · ¯𝑝𝑘−1

=𝑝𝑖 + 𝑝𝑖 (𝑝𝑖+1 + ¯𝑝𝑖+1 (𝑝𝑖+2 + ¯𝑝𝑖+2 (· · · + ¯𝑝𝑘−2 (𝑝𝑘−1 + ¯𝑝𝑘−1))))
=𝑝𝑖 + 𝑝𝑖 (𝑝𝑖+1 + ¯𝑝𝑖+1 (𝑝𝑖+2 + ¯𝑝𝑖+2 (· · · + (𝑝𝑘−1 + ¯𝑝𝑘−1))))
=𝑝𝑖 + 𝑝𝑖 = 1

(4)

Then Claim 1 can be prove by moving

∏𝑘
𝑗=𝑖 (1 − 𝑝 𝑗 ) to the right side of the equation (4).

Claim 2:(
1 +

𝑘∑︁
𝑚=𝑖+1

𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
=

(
𝑝𝑖 +

𝑘∑︁
𝑚=𝑖+1

(𝑚 − 𝑖 + 1)𝑝𝑚
𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 ) + (𝑘 − 𝑖 + 1)
𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 )
)
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Proof 2: We first prove that

𝑝𝑖 +
𝑘∑︁

𝑚=𝑖+1

((𝑚 − 𝑖 + 1)𝑝𝑚 − 1)
𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 ) + (𝑘 − 𝑖 + 1)
𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 ) = 1

The proof goes as follows.

𝑝𝑖 +
𝑘∑︁

𝑚=𝑖+1

((𝑚 − 𝑖 + 1)𝑝𝑚 − 1)
𝑚−1∏
𝑗=𝑖

(1 − 𝑝 𝑗 )

=𝑝𝑖 + (2𝑝𝑖+1 − 1)𝑝𝑖 + (3𝑝𝑖+2 − 1)𝑝𝑖 ¯𝑝𝑖+1 + · · · + ((𝑘 − 𝑖)𝑝𝑘−1 − 1) 𝑝𝑖 ¯𝑝𝑖+1 · · · ¯𝑝𝑘−2

+ ((𝑘 − 𝑖 + 1)𝑝𝑘 − 1)𝑝𝑘𝑝𝑘 · · · ¯𝑝𝑘−1 + (𝑘 − 𝑖 + 1)𝑝𝑘𝑝𝑘 · · · ¯𝑝𝑘−1

=𝑝𝑖 + (2𝑝𝑖+1 − 1)𝑝𝑖 + (3𝑝𝑖+2 − 1)𝑝𝑖 ¯𝑝𝑖+1 + · · · + ((𝑘 − 𝑖)𝑝𝑘−1 − 1) 𝑝𝑖 ¯𝑝𝑖+1 · · · ¯𝑝𝑘−2 + (𝑘 − 𝑖)𝑝𝑘𝑝𝑘 · · · ¯𝑝𝑘−1

=𝑝𝑖 + 𝑝𝑖 ((2𝑝𝑖+1 − 1) + ¯𝑝𝑖+1 ((3𝑝𝑖+2 − 1) + 𝑝3 (· · · ¯𝑝𝑘−2 ((𝑘 − 𝑖)𝑝𝑘−1 + (𝑘 − 𝑖) ¯𝑝𝑘−1))))
=𝑝𝑖 + 𝑝𝑖 ((2𝑝𝑖+1 − 1) + ¯𝑝𝑖+1 ((3𝑝𝑖+2 − 1) + ¯𝑝𝑖+2 (· · · (𝑘 − 2)𝑝𝑘−2 − 1 + ¯𝑝𝑘−2 (𝑘 − 2))))
=𝑝𝑖 + 𝑝𝑖 ((2𝑝𝑖+1 − 1) + 2 ¯𝑝𝑖+1)
=𝑝𝑖 + 𝑝𝑖 = 1

(5)

By adding

∑𝑘
𝑚=𝑖+1

∏𝑚−1

𝑗=𝑖 (1− 𝑝 𝑗 ) to both sides of the equation (5), Claim 2 can be proved. The proof

is thus completed. □

Lemma 3.2 The policy 𝜋𝑘 at state 𝑆𝑖 is optimal if and only if the following conditions are satisfied:

(1) 𝑉𝜋𝑘 (𝑆 𝑗 ) ≥ 0, ∀𝑗 ∈ [𝑖, 𝑘].
(2) 𝑉𝜋𝑙 (𝑆𝑘+1) ≤ 0, ∀𝑙 ∈ [𝑘 + 1,∞).

Proof. We first show that if Condition (1) and (2) are satisfied, the policy 𝜋𝑘 is the optimal policy.

Here we adopt the backward induction (value iteration) to obtain the optimal policy. As mentioned

in Section 3.1, there are two possible actions at each state, namely, 𝑎𝑝 and 𝑎𝑞 . The action 𝑎𝑝 means

that the buyer will pull the gacha game, and the action 𝑎𝑞 means that the buyer will quit. According

to Condition (2), we have that

max

𝑙∈[𝑘+1,∞)
𝑉𝜋𝑙 (𝑆𝑘+1) ≤ 0.

Therefore, we have

𝑉 (𝑆𝑘+1) = max

𝑎∈{𝑎𝑝 ,𝑎𝑞 }

(∑︁
𝑆 ′
𝑃𝑎 (𝑆𝑘+1, 𝑆

′) (𝑅𝑎 (𝑆𝑘+1, 𝑆
′) +𝑉 (𝑆 ′))

)
= max

(
0, max

𝑙∈[𝑘+1,∞)
𝑉𝜋𝑙 (𝑆𝑘+1)

)
= 0.

Thus, the optimal action at state 𝑆𝑘+1 is

𝜋 (𝑆𝑘+1) = arg max𝑎∈{𝑎𝑝 ,𝑎𝑞 }

(∑︁
𝑆 ′
𝑃𝑎 (𝑆𝑘+1, 𝑆

′) (𝑅𝑎 (𝑆𝑘+1, 𝑆
′) +𝑉 (𝑆 ′))

)
= 𝑎𝑞 .

According to Condition (1), we have that

max

𝑙∈[ 𝑗,𝑘 ]
𝑉𝜋𝑙 (𝑆 𝑗 ) ≥ 𝑉𝜋𝑘 (𝑆 𝑗 ) ≥ 0, ∀𝑗 ∈ [𝑖, 𝑘] .
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Therefore, we have

𝑉 (𝑆 𝑗 ) = max

𝑎∈{𝑎𝑝 ,𝑎𝑞 }

(∑︁
𝑆 ′
𝑃𝑎 (𝑆 𝑗 , 𝑆 ′) (𝑅𝑎 (𝑆 𝑗 , 𝑆 ′) +𝑉 (𝑆 ′)

)
= max

(
0, max

𝑙∈[ 𝑗,∞)
𝑉𝜋𝑙 (𝑆 𝑗 )

)
= max

(
0,max

(
max

𝑙∈[ 𝑗,𝑘 ]
𝑉𝜋𝑙 (𝑆 𝑗 ), max

𝑙∈[𝑘+1,∞)
𝑉𝜋𝑙 (𝑆 𝑗 )

))
≥ max

𝑙∈[ 𝑗,𝑘 ]
𝑉𝜋𝑙 (𝑆 𝑗 ) ≥ 0, ∀𝑗 ∈ [𝑖, 𝑘] .

Thus, the optimal action at state 𝑆 𝑗 , ∀𝑗 ∈ [𝑖, 𝑘] is

𝜋 (𝑆 𝑗 ) = arg max𝑎∈{𝑎𝑝 ,𝑎𝑞 }

(∑︁
𝑆 ′
𝑃𝑎 (𝑆, 𝑆 ′) (𝑅𝑎 (𝑆, 𝑆 ′) +𝑉 (𝑆 ′))

)
= 𝑎𝑝 .

Therefore, we have that

𝜋 (𝑆 𝑗 ) = 𝑎𝑝 , ∀𝑗 ∈ [𝑖, 𝑘], and 𝜋 (𝑆𝑘+1) = 𝑎𝑞,
which means that the buyer should continue pulling the gacha game until he wins or reaches state

𝑆𝑘+1. Thus, when Condition (1) and (2) are satisfied, the optimal policy for the buyer at state 𝑆𝑖 is

𝜋𝑘 .

We next show that if the policy 𝜋𝑘 at state 𝑆𝑖 is optimal, then Condition (1) and (2) are satisfied.

Assume that Condition (1) does not hold, i.e., ∃ 𝑗 ∈ [𝑖, 𝑘], s.t.,𝑉𝜋𝑘 (𝑆 𝑗 ) < 0. Suppose that ∃𝑡 ∈
[𝑖 + 1, 𝑗], s.t. 𝑉𝜋 𝑗−1

(𝑆𝑡 ) > 𝑉𝜋𝑘 (𝑆𝑡 ), then we have

𝑉𝜋 𝑗−1

(𝑆𝑡−1) −𝑉𝜋𝑘 (𝑆𝑡−1)

=

(
(𝑝𝑡𝑅 − 𝑐) + (1 − 𝑝𝑡−1)𝑉𝜋 𝑗−1

(𝑆𝑡 )
)
−

(
(𝑝𝑡𝑅 − 𝑐) + (1 − 𝑝𝑡−1)𝑉𝜋𝑘 (𝑆𝑡 )

)
=(1 − 𝑝𝑡−1)

(
𝑉𝜋 𝑗−1

(𝑆𝑡 ) −𝑉𝜋𝑘 (𝑆𝑡 )
)
> 0,

which means

𝑉𝜋 𝑗−1

(𝑆𝑡 ) > 𝑉𝜋𝑘 (𝑆𝑡 ) ⇒ 𝑉𝜋 𝑗−1

(𝑆𝑡−1) > 𝑉𝜋𝑘 (𝑆𝑡−1), 𝑡 ∈ [𝑖 + 1, 𝑗] .

As we know that 𝑉𝜋 𝑗−1

(𝑆 𝑗 ) = 0, and thus 𝑉𝜋 𝑗−1

(𝑆 𝑗 ) > 𝑉𝜋𝑘 (𝑆 𝑗 ). By mathematical induction, we have

that

𝑉𝜋 𝑗−1

(𝑆𝑡 ) > 𝑉𝜋𝑘 (𝑆𝑡 ), ∀𝑡 ∈ [𝑖, 𝑗] .
Specially, we have 𝑉𝜋 𝑗−1

(𝑆1) > 𝑉𝜋𝑘 (𝑆1), which implies that the policy 𝜋 𝑗−1
is better than the policy

𝜋𝑘 , which leads to contradiction.

Assume that Condition (2) does not hold, i.e., ∃ˆ𝑙 ∈ [𝑘 + 1,∞), s.t.,𝑉𝜋 ˆ𝑙
(𝑆𝑘 ) > 0. Suppose that

∃𝑡 ∈ [𝑖 + 1, 𝑘 + 1], s.t. 𝑉𝜋 ˆ𝑙
(𝑆𝑡 ) > 𝑉𝜋𝑘 (𝑆𝑡 ), then we have

𝑉𝜋 ˆ𝑙
(𝑆𝑡−1) −𝑉𝜋𝑘 (𝑆𝑡−1)

=

(
(𝑝𝑡𝑅 − 𝑐) + (1 − 𝑝𝑡−1)𝑉𝜋 ˆ𝑙

(𝑆𝑡 )
)
−

(
(𝑝𝑡𝑅 − 𝑐) + (1 − 𝑝𝑡−1)𝑉𝜋𝑘 (𝑆𝑡 )

)
=(1 − 𝑝𝑡−1)

(
𝑉𝜋 ˆ𝑙

(𝑆𝑡 ) −𝑉𝜋𝑘 (𝑆𝑡 )
)
> 0,

which means

𝑉𝜋 ˆ𝑙
(𝑆𝑡 ) > 𝑉𝜋𝑘 (𝑆𝑡 ) ⇒ 𝑉𝜋 ˆ𝑙

(𝑆𝑡−1) > 𝑉𝜋𝑘 (𝑆𝑡−1), 𝑡 ∈ [𝑖 + 1, 𝑘 + 1] .
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As we know that 𝑉𝜋𝑘 (𝑆𝑘+1) = 0, and thus 𝑉𝜋 ˆ𝑙
(𝑆𝑘+1) > 𝑉𝜋𝑘 (𝑆𝑘+1). By mathematical induction, we

have that

𝑉𝜋 ˆ𝑙
(𝑆𝑡 ) > 𝑉𝜋𝑘 (𝑆𝑡 ), ∀𝑡 ∈ [𝑖, 𝑘 + 1] .

Specially, we have 𝑉𝜋 ˆ𝑙
(𝑆1) > 𝑉𝜋𝑘 (𝑆1), which implies that the policy 𝜋ˆ𝑙

is better than the policy 𝜋𝑘 ,

which leads to contradiction. This proof is thus completed. □

Lemma 3.3 For the buyer who adopts policy 𝜋𝑘 and is currently at state 𝑆𝑖 , the expected number of
gacha pulls that the buyer will buy is

𝐸 (𝜋𝑘 , 𝑆𝑖 ) =
{

0, 𝑘 < 𝑖,

𝑝𝑖 +
∑𝑘
𝑗=𝑖+1

( 𝑗 − 𝑖 + 1)𝑝 𝑗
∏𝑗−1

𝑙=𝑖
(1 − 𝑝𝑙 ) + (𝑘 − 𝑖 + 1)∏𝑘

𝑗=𝑖 (1 − 𝑝 𝑗 ), 𝑘 ≥ 𝑖 .

Proof. The probability of winning the gacha game at state 𝑆 𝑗 ( 𝑗 ≥ 𝑖) is

𝑞( 𝑗) =
{
𝑝𝑖 , 𝑗 = 𝑖,

𝑝 𝑗
∏𝑗−1

𝑙=𝑖
(1 − 𝑝𝑙 ), 𝑗 > 𝑖 .

Therefore, the expected number of gacha pulls needed to win the gacha game for a buyer with

policy 𝜋𝑘 at state 𝑆𝑖 is

𝐸 (𝜋𝑘 , 𝑆𝑖 ) = (𝑘 − 𝑖 + 1)
𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 ) +
𝑘∑︁
𝑗=𝑖

𝑞( 𝑗) · ( 𝑗 − 𝑖 + 1)

= 𝑝𝑖 +
𝑘∑︁

𝑗=𝑖+1

( 𝑗 − 𝑖 + 1)𝑝 𝑗
𝑗−1∏
𝑙=𝑖

(1 − 𝑝𝑙 ) + (𝑘 − 𝑖 + 1)
𝑘∏
𝑗=𝑖

(1 − 𝑝 𝑗 ), ∀𝑘 ≥ 𝑖 .

When 𝑘 < 𝑖 , the buyer will never buy any gacha pull. Therefore, the expected number of gacha

pulls that the buyer will buy is 0. The proof is thus completed. □

B PROOFS IN SECTION 4
Lemma 4.2 The optimal policy 𝜋∗ for the buyer in the gacha game with the whale property is

𝜋∗ =

{
𝜋∞, When 𝑉𝜋∞ (𝑆1) ≥ 0 ⇔ 𝑅 ≥ 𝐸 (𝜋∞)𝑐,
𝜋0, When 𝑉𝜋∞ (𝑆1) < 0 ⇔ 𝑅 < 𝐸 (𝜋∞)𝑐.

Proof. According to Lemma 3.1, the value in MDP at the initial state 𝑆1 for a buyer with valuation

𝑅 and policy 𝜋𝑘 is

𝑉𝜋∞ (𝑆1) = 𝑅 −
(
𝑝1 +

∞∑︁
𝑚=2

𝑚𝑝𝑚

𝑚−1∏
𝑖=1

(1 − 𝑝𝑖 )
)
𝑐. (6)

Besides, according to Lemma 3.3, we have that

𝐸 (𝜋∞) =
(
𝑝1 +

∞∑︁
𝑚=2

𝑚𝑝𝑚

𝑚−1∏
𝑖=1

(1 − 𝑝𝑖 )
)
.

Therefore, Equation (6) can be rewritten as

𝑉𝜋∞ (𝑆1) = 𝑅 − 𝐸 (𝜋∞)𝑐.
Thus, the optimal policy 𝜋∗

in the gacha game with the whale property is straightforward, which

is listed as follows: {
When 𝑉𝜋∞ (𝑆1) ≥ 0 ⇔ 𝑅 ≥ 𝐸 (𝜋∞)𝑐, 𝜋∗ = 𝜋∞,

When 𝑉𝜋∞ (𝑆1) < 0 ⇔ 𝑅 < 𝐸 (𝜋∞)𝑐, 𝜋∗ = 𝜋0.
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The proof is thus completed. □

Lemma 4.3 If the probability of winning the gacha game is monotonically increasing for each gacha
pull, i.e., 𝑝𝑖 ≤ 𝑝𝑖+1,∀𝑖 , the gacha game has the whale property.

Proof. We can prove this lemma by contradiction. If the gacha game is not whale, there exists a

buyer with valuation 𝑅 whose optimal policy is 𝜋𝑘 , 𝑘 ≠ 0 such that𝑉𝜋𝑘 (𝑆 𝑗 ) > 𝑉𝜋𝑖 (𝑆 𝑗 ),∀𝑖 > 𝑘, 𝑗 ≤ 𝑘 ,
which means that the buyer will stop pulling the gacha after 𝑘 rounds. Then the value at state 𝑆𝑘 in

the MDP is

𝑉𝜋𝑘 (𝑆𝑘 ) = 𝑝𝑘𝑅 − 𝑐.
which should greater or equal to zero, otherwise the buyer should stop earlier and 𝜋𝑘 will not be

the optimal policy. Since 𝑝𝑘+1 ≥ 𝑝𝑘 , we have that

𝑉𝜋𝑖 (𝑆𝑘+1) = 𝑝𝑘+1𝑅 − 𝑐 + (1 − 𝑝𝑘+1)𝑉𝜋𝑖 (𝑆𝑘+2) ≥ 𝑝𝑘+1𝑅 − 𝑐 ≥ 𝑉𝜋𝑘 (𝑆𝑘 ), 𝑖 > 𝑘,

which leads to contradiction. Therefore, if 𝑝𝑖 ≤ 𝑝𝑖+1,∀𝑖 , the gacha game has the whale property.

The proof is thus completed. □

Lemma 4.5 When the buyer’s valuation follows the discrete distribution 𝑃 (𝑅 = 𝑅𝑖 ) = 𝛽𝑖 , 𝑖 =

1, 2, · · · , 𝑀 , the whale property gacha game with equivalent probability 𝑝 = 𝑝𝑖∗ can achieve the
maximum seller’s revenue 𝑐

𝑝𝑖∗

∑𝑀
𝑗=𝑖∗ 𝛽 𝑗 , where

𝑖∗ = arg max

𝑖∈{1,2,· · · ,𝑀 }

𝑐

𝑝𝑖

𝑀∑︁
𝑗=𝑖

𝛽 𝑗 , and 𝑝𝑖 =
𝑐

𝑅𝑖
≤ 1.

Proof. The whale property of the gacha game implies that the buyer will either continue pulling

the gacha or just leave it. Suppose that in a whale property gacha game, the buyer with valuation

greater than 𝑅𝑖 will pull the gacha and those with smaller valuation will just leave. Then we

know that the equivalent probability should be
𝑐
𝑅𝑖

≤ 𝑝 < 𝑐
𝑅𝑖−1

. Besides, fixing the price of each

gacha pull 𝑐 , the smaller 𝑝 implies a large 𝐸 (𝜋∞) and possibly a higher revenue. Therefore, in

that scenario, the optimal equivalent probability is 𝑝 = 𝑝𝑖 = 𝑐
𝑅𝑖
, and can achieve the revenue

𝑐
𝑝𝑖

∑𝑀
𝑗=𝑖 𝛽 𝑗 . By enumerating 𝑖 = 1, 2, · · · , 𝑀 , we can find the optimal configuration. The proof is

thus completed. □

Lemma 4.7 When the buyer’s valuation follows the discrete distribution 𝑃 (𝑅 = 𝑅𝑖 ) = 𝛽𝑖 , 𝑖 =

1, 2, · · · , 𝑀 . Consider a gacha game G∗ that can be divided 𝐿(𝐿 ≤ 𝑀) whale property subgames, and
the 𝑖-th whale property subgame contains 𝑛𝑖 rounds of gacha pulls, i.e., 𝑛𝑖 = 𝑎𝑖 − 𝑎𝑖−1, 𝑛𝑖 ≥ 0, where
𝑖 = 1, 2, · · · , 𝑀 . Specially, the length of 𝑖-th subgame being 𝑛𝑖 = 0 implies that the 𝑖-th whale property
subgame is dummy. The equivalent probability of the 𝑖-th subgame is 𝑝𝑖 = 𝑐/𝑅𝑖 (𝑐 ≤ 𝑅𝑖 ) and the
lengths of these whale property subgame n = (𝑛1, 𝑛2, · · · , 𝑛𝑀 ) are

arg max

n
𝑐 ·

𝑀∑︁
𝑘=1

𝛽𝑘𝑄𝑘 (n), 𝑛𝑖 ≥ 0,∀𝑖 = 1, 2, · · · , 𝑀.

where 𝑄𝑘 (n) is the expected number of gacha pulls bought by the buyer with valuation 𝑅𝑘 in the
gacha game with the lengths of the whale property subgames n, which is formulated as follows:

𝑄𝑘 (n) =


1−(1−𝑝̃1 )𝑛1

𝑝̃1

, 𝑘 = 1,(∑𝑘
𝑖=1

(∏𝑖−1

𝑗=1
(1 − 𝑝 𝑗 )𝑛 𝑗

)
1−(1−𝑝̃𝑖 )𝑛𝑖

𝑝̃𝑖

)
, 𝑘 > 1.

Then the gacha game G∗ is optimal and can achieve the maximum seller’s revenue.
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Proof. If the optimal gacha game is the whale property gacha game with equivalent probability

𝑝𝑘 , then it corresponds to the scenario where 𝑛𝑖 = 0,∀𝑖 ≠ 𝑘 . So we only need to consider the

non-whale property gacha game. Without the whale property, we assume that the buyer with

valuation 𝑅𝑘 will continue pulling the gachas and stop at state 𝑆∑𝑘
𝑖=1
𝑛𝑖
. Then we know that the

subgame G(∑𝑘−1

𝑖=1
𝑛𝑖 ,

∑𝑘
𝑖=1
𝑛𝑖 ) has the whale property because none of the buyers will stop at the

midway between state 𝑆∑𝑘−1

𝑖=1
𝑛𝑖
and state 𝑆∑𝑘

𝑖=1
𝑛𝑖
. Since the buyer with valuation greater or equal

to 𝑅𝑘 will pull in the subgame G(∑𝑘−1

𝑖=1
𝑛𝑖 ,

∑𝑘
𝑖=1
𝑛𝑖 ), we know that the equivalent probability of

the subgame G(∑𝑘−1

𝑖=1
𝑛𝑖 ,

∑𝑘
𝑖=1
𝑛𝑖 ) should be at least 𝑐/𝑅𝑘 . To achieve the maximum revenue, the

equivalent probability of the subgame G(∑𝑘−1

𝑖=1
𝑛𝑖 ,

∑𝑘
𝑖=1
𝑛𝑖 ) should be 𝑐/𝑅𝑘 . By enumerating all the

possible combinations of 𝑛𝑖 , 𝑖 = 1, 2, · · · , 𝑀 , we can find the optimal design for the general gacha

game.

We next will show that the expected number of gacha pulls bought by the buyer with valuation

𝑅𝑘 in the gacha game with configuration n = (𝑛1, 𝑛2, · · · , 𝑛𝑀 ) is

𝑄𝑘 (n) =


1−(1−𝑝̃1 )𝑛1

𝑝̃1

, 𝑘 = 1,(∑𝑘
𝑖=1

(∏𝑖−1

𝑗=1
(1 − 𝑝 𝑗 )𝑛 𝑗

)
1−(1−𝑝̃𝑖 )𝑛𝑖

𝑝̃𝑖

)
, 𝑘 > 1.

When 𝑘 = 1, we have that

𝑄1 =

𝑛1∑︁
𝑖=1

𝑝1 (1 − 𝑝1)𝑖−1 · 𝑖 + (1 − 𝑝1)𝑛1 · 𝑛1 =
1 − (1 − 𝑝1)𝑛1

𝑝1

.

To prove the lemma above, we only need to prove that

𝑄𝑘+1 −𝑄𝑘 =

(
𝑘∏
𝑖=1

(1 − 𝑝𝑘 )𝑛𝑘
)

1 − (1 − 𝑝𝑘+1)𝑛𝑘+1

𝑝𝑘+1

.

We know that ∀𝑘 > 1, we have

𝑄𝑘 =
©­­«
𝑛1∑︁
𝑖=1

𝑝1 (1 − 𝑝1)𝑖−1 · 𝑖 +
𝑘∑︁
𝑖=2

∑𝑖
𝑡=1

𝑛𝑡∑︁
𝑗=1+∑𝑖−1

𝑡=1
𝑛𝑡

(
𝑖−1∏
𝑠=1

(1 − 𝑝𝑠 )𝑛𝑠
)
· 𝑝𝑖 (1 − 𝑝𝑖 ) 𝑗−

∑𝑖−1

𝑡=1
𝑛𝑡 · 𝑖

ª®®¬+
(
𝑘∏
𝑖=1

(1 − 𝑝𝑖 )𝑛𝑖
)
·
(
𝑘∑︁
𝑖=1

𝑛𝑖

)
.

Then we have that

𝑄𝑘+1
− 𝑄𝑘

=

∑𝑘+1

𝑡=1
𝑛𝑡∑︁

𝑗=1+∑𝑘
𝑡=1

𝑛𝑡

(
𝑘∏
𝑠=1

(1 − 𝑝̃𝑠 )𝑛𝑠
)
· 𝑝̃𝑘+1

(1 − 𝑝̃𝑘+1
) 𝑗−

∑𝑘
𝑡=1

𝑛𝑡 · 𝑖 +
(
𝑘+1∏
𝑖=1

(1 − 𝑝̃𝑖 )𝑛𝑖
)
·
(
𝑘+1∑︁
𝑖=1

𝑛𝑖

)
−

(
𝑘∏
𝑖=1

(1 − 𝑝̃𝑖 )𝑛𝑖
)
·
(

𝑘∑︁
𝑖=1

𝑛𝑖

)

=

(
𝑘∏
𝑖=1

(1 − 𝑝̃𝑘 )𝑛𝑘
) (

𝑛𝑘+1∑︁
𝑖=1

𝑝̃𝑘+1
(1 − 𝑝̃𝑘+1

)𝑖−1 ·
(
𝑖 +

𝑘∑︁
𝑗=1

𝑛𝑘

))
+

(
𝑘+1∏
𝑖=1

(1 − 𝑝̃𝑖 )𝑛𝑖
)
·
(
𝑘+1∑︁
𝑖=1

𝑛𝑖

)
−

(
𝑘∏
𝑖=1

(1 − 𝑝̃𝑖 )𝑛𝑖
)
·
(

𝑘∑︁
𝑖=1

𝑛𝑖

)
=

(
𝑘∏
𝑖=1

(1 − 𝑝̃𝑘 )𝑛𝑘
) (

𝑛𝑘+1∑︁
𝑖=1

𝑝̃𝑘+1
(1 − 𝑝̃𝑘+1

)𝑖−1 · 𝑖 + (1 − 𝑝̃𝑘+1
)𝑛𝑘+1𝑛𝑘+1

+
𝑘∑︁
𝑗=1

𝑛𝑘

(
(1 − 𝑝̃𝑘+1

)𝑛𝑘+1 +
𝑛𝑘+1∑︁
𝑖=1

𝑝̃𝑘+1
(1 − 𝑝̃𝑘+1

)𝑖−1

)
−

𝑘∑︁
𝑗=1

𝑛𝑘

)
=

(
𝑘∏
𝑖=1

(1 − 𝑝̃𝑘 )𝑛𝑘
) (

𝑛𝑘+1∑︁
𝑖=1

𝑝̃𝑘+1
(1 − 𝑝̃𝑘+1

)𝑖−1 · 𝑖 + (1 − 𝑝̃𝑘+1
)𝑛𝑘+1𝑛𝑘+1

)
=

(
𝑘∏
𝑖=1

(1 − 𝑝̃𝑘 )𝑛𝑘
)

1 − (1 − 𝑝̃𝑘+1
)𝑛𝑘+1

𝑝̃𝑘+1

The proof is thus completed. □

Theorem 1 The maximum seller’s revenue of the non-whale property gacha game is less than that of
the whale property gacha game.
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Proof. According to Lemma 4.7, we have that

𝑐 ·𝑄𝑘 (n) =
𝑘∑︁
𝑖=1

𝐴𝑖 ,

where

𝐴𝑘 =

{
(1 − 𝛼1)𝑅1, 𝑘 = 1,(∏𝑘−1

𝑖=1
𝛼𝑖

)
(1 − 𝛼𝑘 )𝑅𝑘 , 𝑘 > 1,

𝛼𝑘 = (1 − 𝑝𝑘 )𝑛𝑘 ∈ [0, 1] .
According to Proposition 4.7, the optimal configuration to achieve the maximum seller’s revenue

can be found by solving the following optimization problem.

max 𝑓 (𝛼1, 𝛼2, · · · , 𝛼𝐾 ) = (1 − 𝛼1)𝑅1 +
𝐾∑︁
𝑘=2

(
1 −

𝑘−1∑︁
𝑗=1

𝛽 𝑗

) (
𝑘−1∏
𝑖=1

𝛼𝑖

)
(1 − 𝛼𝑘 )𝑅𝑘 , 𝛼𝑖 ∈ [0, 1],∀𝑖 (7)

Let 𝛼∗
1
, · · · , 𝛼∗

𝐾
= arg max 𝑓 (𝛼1, 𝛼2, · · · , 𝛼𝐾 ) and 𝑘∗ = min{𝑖 |𝛼∗𝑖 = 0}. If 𝛼∗𝑖 = 1,∀1 ≤ 𝑖 < 𝑘∗, the

optimal game configuration is a whale property gacha game, which is consistent with Proposition

4.5. Otherwise, if ∃1 ≤ 𝑖 < 𝑘∗, 𝑠 .𝑡 ., 0 < 𝛼∗𝑖 < 1, the non-whale property gacha game can achieve the

maximum revenue. However, if we calculate the partial derivative of the function 𝑓 (𝛼1, 𝛼2, · · · , 𝛼𝐾 ),
we have

𝜕𝑓

𝜕𝛼𝑖
= 𝑐𝑖 , where 𝑐𝑖 is a constant, which implies that to achieve the maximum, 𝛼𝑖 should be

either 0 or 1. Therefore, only the whale property gacha game can achieve the maximum revenue.

We now have proved the optimality of the whale property gacha game when the buyer’s valuation

follows a discrete distribution. We further show that the results of the optimality of the whale

property gacha game can be extended to the scenario where the buyers’ valuation follows the

general distribution 𝐹 (continuous/discrete distribution and even the mixed continuous and discrete

distribution), where 𝐹 (·) is the cumulative distribution function.

Suppose that a gacha game with 𝐾 whale property subgames can achieve the maximum seller’s

revenue when the buyer’s valuation follows the distribution 𝐹 . Denote 𝑅𝑖 as the minimum valuation

of the buyers who will pull in the 𝑖-th whale property subgame. Then 𝛽𝑖 = 𝐹 (𝑅𝑖+1) − 𝐹 (𝑅𝑖 ) denotes
the proportion of buyers who will pull the 𝑖-th whale property subgame but will not pull the

(𝑖 + 1)-th subgame. Specially, 𝛽𝐾 = 𝐹 (𝑅𝐾+1) − 𝐹 (𝑅𝐾 ) = 1 − 𝐹 (𝑅𝐾 ) denotes the proportion of buyers

who will pull all of the 𝐾 subgames. 𝛽0 = 𝐹 (𝑅1) − 𝐹 (𝑅0) = 𝐹 (𝑅1) denotes the proportion of buyers

who will never pull the gacha game. Then we have that

∑𝐾
𝑖=0
𝛽𝑖 = 1. According to Lemma 4.7, we

know that the equivalent probability of the 𝑖-th subgame is 𝑝𝑖 = 𝑐/𝑅𝑖 , 𝑖 = 1, 2, · · · , 𝐾 . Combining

with Lemma 4.7, we can find the optimal gacha game design that can achieve the maximum seller’s

revenue by converting into an optimization problem shown in Equation (7). Similar to the proof

above, we can show that only the whale property gacha game can achieve the maximum revenue

even when the buyer’s valuation follows a general distribution. The proof is thus completed. □

Lemma B.1. Define opt(𝑅) ∈ {0, 1, 2, · · · } as a function of the buyer’s valuation 𝑅, where the optimal
gacha pulling policy for a buyer with valuation 𝑅 at the initial state 𝑆1 is 𝜋opt(𝑅) . Then the function
opt(𝑅) is nondecreasing on 𝑅.

Proof. Consider there are two buyers with their valuations 𝑅1, 𝑅2, we want to prove that if

𝑅1 ≤ 𝑅2, then we have opt(𝑅1) ≤ opt(𝑅2). The proof goes as follows.
For convenience, we denote𝑉𝜋𝑘 (𝑆𝑖 , 𝑅) as the value of MDP of the policy 𝜋𝑘 at state 𝑆𝑖 for a buyer

with valuation 𝑅, which is consistent with the definition in Lemma 3.1. According to Lemma 3.1,
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we know that 𝑉𝜋𝑘 (𝑆𝑖 , 𝑅) is monotonically increasing on 𝑅, which implies that

𝑉𝜋𝑘 (𝑆𝑖 , 𝑅1) ≤ 𝑉𝜋𝑘 (𝑆𝑖 , 𝑅2), ∀𝑘, 𝑖 . (8)

According to Lemma 3.2, since the optimal policy for the buyer with valuation 𝑅1 at the initial state

𝑆1 is 𝜋opt(𝑅1 ) , we have that

𝑉𝜋
opt(𝑅

1
) (𝑆 𝑗 , 𝑅1) ≥ 0, ∀𝑗 ∈ [1, opt(𝑅1)] . (9)

Combining inequality of (8) and (9), we have that

𝑉𝜋
opt(𝑅

1
) (𝑆 𝑗 , 𝑅2) ≥ 𝑉𝜋

opt(𝑅
1
) (𝑆 𝑗 , 𝑅1) ≥ 0, ∀𝑗 ∈ [1, opt(𝑅1)],

which implies that opt(𝑅2) ≥ opt(𝑅1), otherwise, it leads to contradiction to the condition (1) in

Lemma 3.2. The proof is thus completed. □

Theorem 4.9 Consider a gacha game G, which can be divided into 𝐿 consecutive whale property
subgames, namely, G(𝑎𝑖−1 + 1, 𝑎𝑖 ), 𝑖 = 1, 2, · · · , 𝐿, where 𝑎0 = 0 and 𝑎𝐿 = ∞. The gacha game
G is equivalent to the single-item single-bidder Myerson auction with the allocation rule 𝑥 (𝑏) =

𝑃succ (𝜋opt(𝑏 ) ) and the payment rule 𝑦 (𝑏) = 𝐸 (𝜋opt(𝑏 ) ) · 𝑐 , where 𝑏 is the bidding value, 𝜋opt(𝑅) denotes
the optimal gacha pulling policy for a buyer with valuation 𝑅 at initial state 𝑆1, which is formulated as

opt(𝑅) =


𝑎0 = 0, 𝑅 ≤ 𝐸 (𝜋𝑎

1
) ·𝑐

𝑃succ (𝜋𝑎
1
) ,

𝑎𝑖 ,
(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1

)) ·𝑐
𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1

) < 𝑅 ≤ (𝐸 (𝜋𝑎𝑖+1
)−𝐸 (𝜋𝑎𝑖 )) ·𝑐

𝑃succ (𝜋𝑎𝑖+1
)−𝑃succ (𝜋𝑎𝑖 )

,

𝑎𝐿 = ∞, 𝑅 >
(𝐸 (𝜋∞ )−𝐸 (𝜋𝑎𝐿−1

)) ·𝑐
𝑃succ (𝜋∞ )−𝑃succ (𝜋𝑎𝐿−1

),

𝑃succ (𝜋𝑘 ) = 1 − ∏𝑘
𝑗=1

(1 − 𝑝 𝑗 ) denotes the probability of winning the gacha game with policy 𝜋𝑘 , and
𝐸 (𝜋𝑘 ) denotes the expected number of gacha pulls with policy 𝜋𝑘 , which is formulated in Lemma 3.3.

Proof. According to the definition of the whale property subgame in Definition 4.6, the optimal

policy for a buyer with his personal valuation𝑅 ∈ R+ at the initial state 𝑆1 could be 𝜋𝑎𝑖 , 𝑖 = 0, 1, · · · , 𝐿.
Define opt(𝑅) ∈ {0, 1, 2, · · · } is a function of the buyer’s valuation 𝑅, and 𝜋opt(𝑅) denotes the optimal

gacha pulling policy for a buyer with valuation 𝑅 at the initial state 𝑆1. According to Lemma B.1,

the function opt(𝑅) is monotone. Therefore, if the buyer’s optimal policy is 𝜋𝑎𝑖 , his valuation 𝑅

should satisfy the following conditions:
𝑉𝜋𝑎𝑖 (𝑆1, 𝑅) ≤ 𝑉𝜋𝑎𝑖+1

(𝑆1, 𝑅), 𝑖 = 0,

𝑉𝜋𝑎𝑖−1

(𝑆1, 𝑅) < 𝑉𝜋𝑎𝑖 (𝑆1, 𝑅) ≤ 𝑉𝜋𝑎𝑖+1

(𝑆1, 𝑅), 𝑖 = 1, 2, · · · , 𝐿 − 1,

𝑉𝜋𝑎𝑖 (𝑆1, 𝑅) > 𝑉𝜋𝑎𝑖−1

(𝑆1, 𝑅), 𝑖 = 𝐿.

(10)

For convenience, we denote the probability of winning the gacha game with policy 𝜋𝑘 as 𝑃succ (𝜋𝑘 ),
which is calculated as follows:

𝑃succ (𝜋𝑘 ) = 1 −
𝑘∏
𝑗=1

(1 − 𝑝 𝑗 ).

Then combining Lemma 3.1 and Lemma 3.3, the value of MDP for the buyer with valuation 𝑅 and

policy 𝜋𝑘 at initial state 𝑆1 can be simplified as

𝑉𝜋𝑘 (𝑆1, 𝑅) =
(
1 −

𝑘∏
𝑗=1

(1 − 𝑝 𝑗 )
)
𝑅 −

(
𝑝1 +

𝑘∑︁
𝑚=2

𝑚𝑝𝑚

𝑚−1∏
𝑖=1

(1 − 𝑝𝑖 ) + 𝑘
𝑘∏
𝑖=1

(1 − 𝑝𝑖 )
)
𝑐

= 𝑃succ (𝜋𝑘 )𝑅 − 𝐸 (𝜋𝑘 ) · 𝑐,
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where 𝐸 (𝜋𝑘 ) denotes the expected number of gacha pulls with policy 𝜋𝑘 . Thus, the value of MDP

for the buyer with valuation 𝑅 and policy 𝜋𝑎𝑖 at initial state 𝑆1 is

𝑉𝜋𝑎𝑖 (𝑆1, 𝑅) = 𝑃succ (𝜋𝑎𝑖 )𝑅 − 𝐸 (𝜋𝑎𝑖 ) · 𝑐
Then by solving the inequality (10), the optimal policy 𝜋opt(𝑅) for the buyer with valuation 𝑅 at

initial state 𝑆1 is

opt(𝑅) =


𝑎0 = 0, 𝑅 ≤ 𝐸 (𝜋𝑎

1
) ·𝑐

𝑃succ (𝜋𝑎
1
) ,

𝑎𝑖 ,
(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1

)) ·𝑐
𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1

) < 𝑅 ≤ (𝐸 (𝜋𝑎𝑖+1
)−𝐸 (𝜋𝑎𝑖 )) ·𝑐

𝑃succ (𝜋𝑎𝑖+1
)−𝑃succ (𝜋𝑎𝑖 )

,

𝑎𝐿 = ∞, 𝑅 >
(𝐸 (𝜋∞ )−𝐸 (𝜋𝑎𝐿−1

)) ·𝑐
𝑃succ (𝜋∞ )−𝑃succ (𝜋𝑎𝐿−1

)

(11)

Then the value of the buyer with valuation 𝑅 and his optimal policy 𝜋opt(𝑅) at initial state 𝑆1 is

𝑉𝜋
opt(𝑅) (𝑆1, 𝑅) = 𝑃succ (𝜋opt(𝑅) ) · 𝑅 − 𝐸 (𝜋opt(𝑅) ) · 𝑐 (12)

We now design a single-item single-bidder Myerson auction and then show its equivalence to

the gacha game. We first design the allocation rule with bidding value 𝑏 as follows:

𝑥 (𝑏) =


𝑃succ (𝜋𝑎0

) = 0, 𝑏 ≤ 𝐸 (𝜋𝑎
1
) ·𝑐

𝑃succ (𝜋𝑎
1
) ,

𝑃succ (𝜋𝑎𝑖 ) ∈ (0, 1), (𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1
)) ·𝑐

𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1
) < 𝑏 ≤ (𝐸 (𝜋𝑎𝑖+1

)−𝐸 (𝜋𝑎𝑖 )) ·𝑐
𝑃succ (𝜋𝑎𝑖+1

)−𝑃succ (𝜋𝑎𝑖 )
,

𝑃succ (𝜋𝑎𝐿 ) = 1, 𝑏 >
(𝐸 (𝜋∞ )−𝐸 (𝜋𝑎𝐿−1

)) ·𝑐
𝑃succ (𝜋∞ )−𝑃succ (𝜋𝑎𝐿−1

)

(13)

Since 𝑎𝑖−1 < 𝑎𝑖 , 𝑖 = 1, 2, · · · , 𝐿 and 𝑃succ (𝜋𝑘 ) is monotonically increasing on 𝑘 , we know that the

allocation rule 𝑥 (𝑏) is also monotone. According to Myerson’s Lemma, we know that the allocation

rule 𝑥 (𝑏) is also implementable, and there exists a unique payment rule𝑦 (𝑏) such that the sealed-bid
auction mechanism (𝑥,𝑦) is dominant-strategy incentive-compatible (DSIC). The payment rule

𝑦 (𝑏) is calculated as follows:

𝑦 (𝑏) =
∫ 𝑏

0

𝑧
𝑑

𝑑𝑧
𝑥 (𝑧)𝑑𝑧

= 𝑏 · 𝑥 (𝑏) −
∫ 𝑏

0

𝑥 (𝑧)𝑑𝑧

=


0, 𝑏 ≤ 𝐸 (𝜋𝑎

1
) ·𝑐

𝑃succ (𝜋𝑎
1
) ,∑𝑖

𝑗=1

(
𝑃succ (𝜋𝑎𝑖 ) ·

(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1
)) ·𝑐

𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1
)

)
,

(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1
)) ·𝑐

𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1
) < 𝑏 ≤ (𝐸 (𝜋𝑎𝑖+1

)−𝐸 (𝜋𝑎𝑖 )) ·𝑐
𝑃succ (𝜋𝑎𝑖+1

)−𝑃succ (𝜋𝑎𝑖 )
,∑𝐿

𝑗=1

(
𝑃succ (𝜋𝑎𝑖 ) ·

(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1
)) ·𝑐

𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1
)

)
, 𝑏 >

(𝐸 (𝜋∞ )−𝐸 (𝜋𝑎𝐿−1
)) ·𝑐

𝑃succ (𝜋∞ )−𝑃succ (𝜋𝑎𝐿−1
)

=


𝐸 (𝜋𝑎0

) · 𝑐 = 0, 𝑏 ≤ 𝐸 (𝜋𝑎
1
) ·𝑐

𝑃succ (𝜋𝑎
1
) ,

𝐸 (𝜋𝑎𝑖 ) · 𝑐,
(𝐸 (𝜋𝑎𝑖 )−𝐸 (𝜋𝑎𝑖−1

)) ·𝑐
𝑃succ (𝜋𝑎𝑖 )−𝑃succ (𝜋𝑎𝑖−1

) < 𝑏 ≤ (𝐸 (𝜋𝑎𝑖+1
)−𝐸 (𝜋𝑎𝑖 )) ·𝑐

𝑃succ (𝜋𝑎𝑖+1
)−𝑃succ (𝜋𝑎𝑖 )

,

𝐸 (𝜋𝑎𝐿 ) · 𝑐, 𝑏 >
(𝐸 (𝜋∞ )−𝐸 (𝜋𝑎𝐿−1

)) ·𝑐
𝑃succ (𝜋∞ )−𝑃succ (𝜋𝑎𝐿−1

)
(14)

With the payment rule 𝑦 (𝑏), the mechanism is DSIC and thus truthful. Therefore, the bidding

value 𝑏 is exactly the buyer’s personal valuation 𝑅. Comparing equation (11) and (13), we can find

that 𝑥 (𝑏) = 𝑃succ (𝜋opt(𝑏 ) ). Comparing equation (11) and (14), we can find that 𝑦 (𝑏) = 𝐸 (𝜋opt(𝑏 ) ) · 𝑐 .
Following the quasilinear utility model of the bidder in Myerson auction, the bidder’s utility is

𝑢 (𝑅) = 𝑅 · 𝑥 (𝑅) − 𝑦 (𝑅)
= 𝑃succ (𝜋opt(𝑅) ) · 𝑅 − 𝐸 (𝜋opt(𝑅) ) · 𝑐
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which is exactly the MDP value of the buyer with valuation 𝑅 and his optimal policy 𝜋opt(𝑅) at
initial state 𝑆1 in equation (12). Therefore, the gacha game is equivalent to the Myerson auction

with the stochastic allocation rule 𝑥 (𝑏) and the payment rule 𝑦 (𝑏). The proof is thus completed. □

Theorem 4.10 The optimal gacha game that can achieve the maximum seller’s revenue should have
whale property and satisfy the following condition:

𝐸 (𝜋∞) · 𝑐 = 𝑟 ∗ = arg max

𝑟
𝑟 · (1 − 𝐹 (𝑟 )),

where 𝑐 is the cost of each gacha pull, 𝐸 (𝜋∞) is the expected number of gacha pulls to win the gacha
game with policy 𝜋∞, 𝑟 ∗ is the optimal reserved price in the single-item single-bidder Myerson auction.

Proof. According to Theorem 4.8 and Theorem 4.9, we know that only the whale property

gacha game can achieve the maximum seller’s revenue. To prove the theorem above, we only need

to prove that in the gacha game with the whale property, for a buyer with valuation 𝑅, where 𝑅

follows the distribution 𝐹 , when 𝑅 ≥ 𝑐𝐸 (𝜋∞), we have 𝑉𝜋∞ (𝑆1) ≥ 0. This implies that when the

valuation is greater than or equal to 𝑐𝐸 (𝜋∞), the optimal policy for the buyer is 𝜋∞, that is, the
buyer will continue pulling the gacha until he wins the gacha game.

According to Lemma 3.1, the value at the initial state 𝑆1 in the MDP is

𝑉𝜋∞ (𝑆1) = 𝑅 −
(
𝑝1 +

∞∑︁
𝑚=2

𝑚𝑝𝑚

𝑚−1∏
𝑖=1

(1 − 𝑝𝑖 )
)
𝑐.

Therefore, the optimal policy for the buyer is 𝜋∞ when

𝑉𝜋∞ (𝑆1) ≥ 0 ⇔ 𝑅 ≥
(
𝑝1 +

∞∑︁
𝑚=2

𝑚𝑝𝑚

𝑚−1∏
𝑖=1

(1 − 𝑝𝑖 )
)
𝑐 = 𝐸 (𝜋∞) .

According to the analysis above, we know that when 𝑅 ≥ 𝑐𝐸 (𝜋∞), we have 𝑉𝜋∞ ≥ 0. Therefore, to

maximum the revenue, the seller needs to carefully design the game configuration such that

arg max

𝑐,𝜋
𝑐𝐸 (𝜋∞) · (1 − 𝐹 (𝑐𝐸 (𝜋∞))) .

Therefore, when

𝑐𝐸 (𝜋∞) = 𝑟 ∗ = arg max

𝑟
𝑟 · (1 − 𝐹 (𝑟 )),

the gacha game with the whale property can achieve the maximum revenue and 𝑟 ∗ is exactly the

optimal mechanism design for the single-item single-bidder Myerson auction. The proof is thus

completed. □

Proposition 1 With budget constraints, the whale property gacha game can achieve a higher seller’s
revenue than the “take-it-or-leave-it” strategy.

Proof. We first show that the maximum seller’s revenue in the whale property gacha game is

at least greater than or equal to that in the “take-it-or-leave-it” strategy. Assume that the optimal

price that can achieve the maximum seller’s revenue in the “take-it-or-leave-it” strategy is 𝑟 ∗.
Then construct the gacha game G with the price of the gacha pull 𝑐 , where 𝑟 ∗/𝑐 is an integer,

and the probability that 𝑝𝑖 = 0,∀𝑖 < 𝑟 ∗/𝑐 and 𝑝𝑟 ∗/𝑐 = 1, the gacha game G can achieve the same

seller’s revenue in the “take-it-or-leave-it” strategy is 𝑟 ∗. Combing Example 1, we can find that

with budget constraints, the whale property gacha game can achieve a higher seller’s revenue than

the “take-it-or-leave-it” strategy.
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Suppose that each buyer’s budget is a realization of the random variable 𝐵 with distribution

𝐹𝐵 . Let the joint probability density function of the budget 𝐵 and the valuation 𝑅 be 𝑓 (𝑅, 𝐵). The
revenue of the “take-it-or-leave-it” selling strategy with price 𝑟 is

𝑈TILI (𝑟 ) = 𝑟 ·
∫ ∞

𝑟

∫ ∞

𝑟

𝑓 (𝑅, 𝐵)𝑑𝑅𝑑𝐵.

Here we consider a simple fixed-probability gacha game with winning probability 𝑝 and the price

of gacha pull 𝑐 . In the gacha game, the buyers will purchase the gacha pull until they win the gacha

game or until they run out of their budget. Suppose that the equivalent price for winning the gacha

game is 𝑟 , then the seller’s revenue is

𝑈Gacha (𝑝, 𝑐) =
∫ ∞

0

𝐸 (𝜋⌊ 𝐵
𝑐
⌋) · 𝑐

∫ ∞

𝑐
𝑝

𝑓 (𝑅, 𝐵)𝑑𝑅𝑑𝐵

=

∫ ∞

0

1 − (1 − 𝑝) ⌊ 𝐵𝑐 ⌋

𝑝
· 𝑐

∫ ∞

𝑐
𝑝

𝑓 (𝑅, 𝐵)𝑑𝑅𝑑𝐵

Due to robustness to the random fluctuations in buyer’s budge, the gacha game with the whale

property is possible to achieve a higher seller’s revenuewhen the buyers are budget-constrained. □

C PROOFS IN SECTION 5
Proposition 2 For the whale property sequential multi-item gacha game with the reset-after-winning
mechanism, the buyer will continue pulling the gacha game until he has won 𝑘∗ times, where

𝑘∗ = arg max

𝑘=0,1,2,· · · ,𝐾

{(
𝑘∑︁
𝑗=1

𝑅 𝑗

)
− 𝑘𝐸 (𝜋∞) · 𝑐

}
. (15)

Specially, 𝑘∗ = 0 implies that the buyer will never pull the gacha game. Here 𝐸 (𝜋∞) denotes the
expected number of gacha pulls needed to win the gacha game once, which is formulated in Lemma
3.3, and 𝑐 denotes the price of each gacha pull.

Proof. The whale property guarantees that the buyer would not pull the gacha and stop midway

without winning the gacha game. Therefore, the buyer will only stop when he has won the gacha

game with 0, 1, 2, · · · , 𝐾 times. To figure out the optimal policy that maximizes his utility, the buyer

needs to decide when to stop, which can be considered as an optimal stopping problem. Besides,

the reset-after-winning mechanism guarantees that the expected cost for each win of the gacha

game remains the same, i.e., 𝐸 (𝜋∞) · 𝑐 . If the buyer wants to stop when he has won the gacha game

with 𝑘 times, his expected profit will be

{(∑𝑘
𝑗=1
𝑅 𝑗

)
− 𝑘𝐸 (𝜋∞) · 𝑐

}
. The buyer will figure out the

optimal 𝑘∗ to maximize his profit, which is listed in (15).

Besides, we will show that the optimal 𝑘∗ always holds during the buyer’s gacha pulling process.

Initially, the buyer never wins the gacha game before, then he will figure out the optimal 𝑘∗ to
maximize his profit, which is listed in (15). During the buyer’s gacha pulling process, suppose that

the buyer has won the gacha game 𝑡 times (𝑡 < 𝑘∗). Then the buyer will continue pulling the gacha

game until he has won more𝑚∗ (𝑡) times, where

𝑚∗ (𝑡) = arg max

𝑚=0,1,2,· · · ,𝐾−𝑡

{(
𝑡+𝑚∑︁
𝑗=𝑡+1

𝑅 𝑗

)
−𝑚𝐸 (𝜋∞) · 𝑐

}
.
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We will show that 𝑘∗ ≡ 𝑡 +𝑚∗ (𝑡). We will prove it by contradiction. Suppose that 𝑡 +𝑚∗ (𝑡) ≠ 𝑘∗.
Then we have

𝑘 ′ =

(
𝑡∑︁
𝑗=1

𝑅 𝑗

)
− 𝑡𝐸 (𝜋∞) · 𝑐 + arg max

𝑘=𝑡+1,𝑡+2,· · · ,𝐾

{(
𝑘∑︁

𝑗=𝑡+1

𝑅 𝑗

)
− 𝑘𝐸 (𝜋∞) · 𝑐

}
=

(
𝑡∑︁
𝑗=1

𝑅 𝑗

)
− 𝑡𝐸 (𝜋∞) · 𝑐 + arg max

𝑚=0,1,2,· · · ,𝐾−𝑡

{(
𝑡+𝑚∑︁
𝑗=𝑡+1

𝑅 𝑗

)
−𝑚𝐸 (𝜋∞) · 𝑐

}
= 𝑡 +𝑚∗ (𝑡)

Since the buyer has won the gacha game 𝑡 times (𝑡 < 𝑘∗), we know 𝑘∗ = 𝑘 ′, which leads to

contradiction. Therefore, during the mining process, the buyer will continue pulling the gacha

game until he has won 𝑘∗ times. The proof is thus completed. □

Proposition 3 For the whale property sequential multi-item gacha game with the succeed-after-
winning mechanism, the buyer that has won the gacha game 𝑘 times (𝑘 = 0, 1, · · · , 𝐾 − 1), will pull
the gacha at state 𝑆𝑖 if and only if

max

𝑡=1,2,· · · ,𝐾−𝑘

©­«
𝑘+𝑡∑︁
𝑗=𝑘+1

𝑅 𝑗
ª®¬ − 𝐻 (𝑡, 𝑖) · 𝑐

 ≥ 0,

where 𝐻 (𝑡, 𝑖) denotes the expected number of gacha pulls needed to win the gacha game 𝑡 more times
when the buyer is at state 𝑆𝑖 , which can be recursively calculated as follows:

𝐻 (𝑡, 𝑖) =
{∑∞

𝑗=𝑖 𝑝 𝑗
∏𝑗−1

𝑡=𝑖
(1 − 𝑝𝑡 ) · ( 𝑗 − 𝑖 + 1), 𝑡 = 1,∑∞

𝑗=𝑖 𝑝 𝑗
∏𝑗−1

𝑡=𝑖
(1 − 𝑝𝑡 ) · ( 𝑗 − 𝑖 + 1 + 𝐻 (𝑡 − 1, 𝑗 + 1)), 𝑡 > 1.

where 𝑝𝑖 is the probability to win the gacha game at state 𝑆𝑖 .

Proof. The whale property guarantees that the buyer would not pull the gacha and stop midway

without winning the gacha game. Therefore, the buyer will only stop when he has won the gacha

game with 0, 1, 2, · · · , 𝐾 times. To figure out the optimal policy to maximize his utility, the buyer

needs to decide when to stop, which is an optimal stopping problem. If the buyer stops pulling the

gacha anymore, he will get 0 profit at state 𝑆𝑖 . On the other hand, if the buyer wants 𝑡, 1 ≤ 𝑡 ≤ 𝐾 −𝑘
more wins, his profit will be

(∑𝑘+𝑡
𝑗=𝑘+1

𝑅 𝑗

)
−𝐻 (𝑡, 𝑖) · 𝑐 , where 𝐻 (𝑡, 𝑖) denotes the expected number of

gacha pulls needed to win the gacha game 𝑡 times when the buyer is at state 𝑆𝑖 . Since the buyer is

currently at state 𝑆𝑖 , the probability that the buyer wins the gacha game at state 𝑆 𝑗 , 𝑗 = 𝑖, 𝑖 +1, · · · , 𝑁
is (𝑝 𝑗

∏𝑗−1

𝑡=𝑖
(1 − 𝑝𝑡 )). Once the buyer wins the gacha at state 𝑆 𝑗 , the buyer will enter the next state

𝑆 𝑗+1. Besides, the buyer only needs 𝑡 − 1 more wins if he has won at state 𝑆 𝑗 . Therefore, we have

(2). The proof is thus completed. □

Theorem 5.1 For the sequential multi-item gacha game with infinite items, and the buyer’s
valuation of each item follows the identical and independent distribution with mean 𝜇 and variance
𝜎2, the whale property sequential multi-item gacha game with the reset-after-winning mechanism can
achieve the asymptotic optimality on seller’s revenue, i.e.,

lim

𝐾→∞

𝑐 · E(# of gacha pulls purchases)
𝐾

= 𝜇,

where 𝑐 ·E(# of gacha pulls purchases)
𝐾

denotes the normalized seller’s revenue, 𝑐 is the price of each gacha
pull and 𝐾 is the number of items in the gacha game.
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Proof. sketch: Assume that the buyer has won the gacha game 𝑘 times. When 𝐾 is large, while

𝑘 is relatively small, then the low of large numbers implies that
1

𝐾−𝑘

(∑𝐾
𝑗=𝑘+1

𝑅 𝑗

)
≈ 𝜇. Therefore, if

the price of this gacha game is 𝐸 · 𝑐 = 𝜇 − 𝜖 , where 𝜖 can be arbitrarily small, the buyer will pull the

gacha game until he wins again according to Proposition 2. Recursively, the buyer will continue

pulling the gacha until he has won 𝐾 −𝑇 times and the expected valuation for the remaining gacha

game
1

𝐾−𝑇

(∑𝐾
𝑗=𝑇 𝑅 𝑗

)
is smaller than 𝜇 − 𝜖 . Since 𝐾 is large, while 𝑇 is relatively small, 𝑇 /𝐾 → 0.

Therefore, the buyer will pull the gacha almost all times with price for each time being 𝜇 − 𝜖 , which
implies the asymptotic optimality on seller’s revenue.

detail: Let 𝑣 𝑗 denote the user’s valuation for winning the gacha game at 𝑗-th time, 𝑥𝑘 =
1

𝑘

∑𝐾
𝑗=𝐾−𝑘+1

𝑣 𝑗 denote the normalized expected valuation for bundling the reward of the gacha

game winning at 𝑗 = 𝐾 − 𝑘, 𝐾 − 𝑘 + 1, · · · , 𝐾 time. Let 𝜇𝑘 = E(𝑥𝑘 ) and 𝜎𝑘 = E
(
|𝑥𝑘 − 𝜇𝑘 |2

)
. Let

lim𝑘→∞ 𝜇𝑘 = 𝜇 and lim𝑘→∞ 𝜎𝑘 = 𝜎 . Denote by 𝑝∗
𝑘
, 𝑞∗
𝑘
the optimal price (𝐸 · 𝑐) for the gacha game

and the corresponding quantity (0 ≤ 𝑞∗
𝑙
≤ 1), and let 𝜋∗

𝑘
be the resulting profits 𝜋∗

𝑘
= 𝑝∗

𝑘
𝑞∗
𝑘
. Let

lim𝑘→∞ 𝑝
∗
𝑘
= 𝑃 and lim𝑘→∞ 𝑞

∗
𝑘
= 𝑄 . We will show that 𝑃 = 𝜇 and 𝑄 = 1.

If 𝑃 > 𝜇, there exists some 𝜖 > 0 such that for all large enough 𝑘 , 𝑝∗
𝑘
> 𝜇 + 𝜖 . By the weak law of

large numbers, we know that Pr ( |𝑥𝑘 − 𝜇 | < 𝜖) ≥ 1 − 𝛿 , where 𝑛 ≥ 𝛿2

𝜖2𝛿
or 𝛿 ≤ 𝜎2

𝜖2𝑛
. Thus, if 𝑃 > 𝜇,

{𝑞∗
𝑘
} → 0, and since {𝑝∗

𝑘
} is bounded, we have {𝜋∗

𝑘
} → 0, which contradicts the optimality of 𝑝∗

𝑘

and 𝑞∗
𝑘
.

If 𝑃 < 𝜇, there exists some 𝜖 > 0 such that for all large enough 𝑘 , 𝑝∗
𝑘
< 𝜇−𝜖 . Let 𝑝𝑘 = 𝑃 + 𝜖

2
, and 𝑞

the corresponding quantity. Theweak law of large numbers implies that lim𝑘→∞ 𝑞
∗
𝑘
= lim𝑘→∞ 𝑞𝑘 = 1

and lim𝑘→∞ (𝑞∗
𝑘
− 𝑞𝑘 ) = 0. Since for large enough 𝑘 , 𝑝𝑘 − 𝑝∗

𝑘
≥ 𝜖

2
, it follows that 𝑝𝑘𝑞𝑘 > 𝑝∗

𝑘
𝑞∗
𝑘
,

which again contradicts the optimality of 𝑝∗
𝑘
and 𝑞∗

𝑘
. Thus, lim𝑘→∞ 𝑝

∗
𝑘
= 𝜇. Then we can show

𝑃 = 𝜇 and 𝑄 = 1, which implies the asymptotic optimality on seller’s revenue. The proof is thus

completed. □

Theorem 5.2 The banner-based gacha game with the reset-after-opt-out mechanism, the banner-
based gacha game with the succeed-after-opt-out mechanism, and the separate selling with several
independent single-item gacha games are equivalent, i.e., the behaviors of the rational buyers and the
seller’s revenues in these gacha game are the same.

Proof. We first show that the multi-item gacha game with two banners with values of 𝑅1 and

𝑅2 is equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2). And the theorem above can

be obtained by induction.

It is easy to prove that when 𝑅1 ≥ 𝑅2, it is equivalent to the single-item gacha games as G(𝑅1)
and G(𝑅2). The reason goes as follows. On the one hand, if the player will pull in both G(𝑅1) and
G(𝑅2), he will also pull the gacha in both banners. On the other hand, if the player will only pull in

G(𝑅1) and will not pull in G(𝑅2), the player will pull the first banner and will not stop pulling the

gacha in the first banner and wait for the second banner since 𝑅1 ≥ 𝑅2. Therefore, when 𝑅1 ≥ 𝑅2

(Scenario 1), it is equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2).
We next consider the scenario where 𝑅1 < 𝑅2, and show that it is equivalent to the single-item

gacha games as G(𝑅1) and G(𝑅2). We consider the three cases:

• Case 1: The player will not pull either G(𝑅1) or G(𝑅2).
• Case 2: The player will pull both G(𝑅1) and G(𝑅2).
• Case 3: The player will only pull G(𝑅2) but will not pull in G(𝑅1).

It is obvious that in Case 1 the player will not pull in the multi-items gacha game in any banners,

because pulling gacha in any banner will leave him with negative utility. Thus, in this case, it is

equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2).
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We next investigate the Case 2, and further show that it is not profitable for the player to stop

pulling the gacha in the first banner and wait for the second banner. Thus, we can prove that in this

case, it is equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2). The proof goes as follows.
We are going to prove by contradiction. Suppose that the player that has pulled 𝑛 − 1 gacha

pulls will stop pulling the gacha in the first banner and wait for the second banner. The player’s

utility that he will pull in the 𝑛-th round, but will end in the (𝑛 + 1)-th round in G(𝑅1) is analyzed
as follows. The probability that the player wins the gacha game G(𝑅1) in the (𝑛)-round is 𝑝𝑛 . Once

he wins G(𝑅1), he will wait and enter the game G(𝑅2) with his state being 𝑆1. On the other hand, if

he does not win the game G(𝑅1) in the 𝑛-th round, he will wait and enter the game G(𝑅2) with his

state being 𝑆𝑛 . Then we have

𝑉𝜋∞ (𝑆𝑛, 𝑅2) > 𝑉𝜋∞ (𝑆𝑛, 𝑅1) +𝑉𝜋∞ (𝑆1, 𝑅2)
⇒𝑅2 − 𝐸𝑛𝑐 > 𝑅1 − 𝐸𝑛𝑐 + 𝑅2 − 𝐸𝑐
⇒𝑅1 − 𝐸𝑐 < 0

(16)

where 𝐸 denotes the expected number of gacha pulls needed to win the gacha game at state 𝑆1

and 𝐸𝑛 = 1 +∑∞
𝑚=𝑛+1

∏𝑚−1

𝑗=𝑛 (1 − 𝑝 𝑗 ) denotes the expected number of gacha pulls needed to win the

gacha game at state 𝑆𝑛 . 𝑅1 − 𝐸𝑐 = 𝑣𝑎1
(𝑅, 1) < 0 implies that the player will not pull the gacha game

G(𝑅1), which leads to contradiction. Therefore, the player will not stop pulling the gacha in the

first banner. Obviously, after winning the gacha game in the first banner, the gacha game in the

second banner is equivalent to the independent single-item gacha game G(𝑅2). Therefore, in this

case, it is equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2).
We next investigate the Case 3, and further show that it is not profitable for the player to pull a

small number of gacha pulls in the first banner and wait for the second banner. Similarly, we will

show that if the player stops pulling the gacha game in the first banner in any round, he would

never pull the gacha in the first banner. Suppose that the player that has pulled 𝑛 − 1 gacha pulls

will stop pulling the gacha in the first banner and wait for the second banner. Then we have

𝑝𝑛 (𝑅1 +𝑉𝜋∞ (𝑆1, 𝑅2)) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅2) > 𝑉𝜋∞ (𝑆𝑛, 𝑅2)
⇒𝑝𝑛 (𝑅1 + 𝑅2 − 𝐸𝑐) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅2) > 𝑝𝑛𝑅2 − 𝑐 + (1 − 𝑝𝑛)𝑉 (𝑆𝑛+1, 𝑅2)
⇒𝑅1 − 𝐸𝑐 > 0

where 𝐸 denotes the expected number of gacha pulls needed to win the gacha game. 𝑅1 − 𝐸𝑐 =

𝑉𝜋∞ (𝑆1, 𝑅1) > 0 implies that the player will pull the gacha gameG(𝑅1), which leads to contradiction.

Therefore, the player will never pull the gacha in the first banner, and then the gacha game in the

second banner is equivalent to the independent single-item gacha game G(𝑅2). Therefore, in this

case, it is equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2).
To sum up, we can claim that the multi-item gacha game with two banners with values of 𝑅1

and 𝑅2 is equivalent to the single-item gacha games as G(𝑅1) and G(𝑅2). And the theorem above

can be obtained by induction. The proof is thus completed. □

D PROOFS IN SECTION 6
Theorem 6.1 The subsidies in fixed-probability gacha game always degrade the seller’s revenue
compared to the gacha game without any subsidies.

Proof. In the fixed-probability gacha game with𝑚 free gacha pulls, the buyers always pull the

subsidized𝑚 free gacha pulls first. If the buyers do not win the gacha game within𝑚 gacha pulls,

the buyers with high valuation, i.e., 𝑅 ≥ 𝑐/𝑝 will buy the gacha pull from the seller to continue

pulling the gacha game, and those with low valuation, i.e., 𝑅 < 𝑐/𝑝 will stop and leave the gacha

game. Therefore, the optimal policy for the buyer is either 𝜋𝑚 or 𝜋∞. For the buyer with high
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valuation 𝑅 ≥ 𝑐/𝑝 , the probability that the buyer wins the gacha game within𝑚 gacha pulls is

(1 − (1 − 𝑝)𝑚), and the expected number of free gacha pulls spent in the gacha game is

𝐸𝑠 (𝜋∞,𝑚) =
𝑚∑︁
𝑛=1

𝑛𝑝 (1 − 𝑝)𝑛−1 =
1 − (1 − 𝑝)𝑚

𝑝
−𝑚(1 − 𝑝)𝑚 .

The probability that the buyer spends all the free gacha pulls and needs to buy the gacha pull is

(1 − 𝑝)𝑚 , and the expected number of the bought gacha pulls in the gacha game is

𝐸𝑏 (𝜋∞,𝑚) =
∞∑︁

𝑛=𝑚+1

(𝑛 −𝑚)𝑝 (1 − 𝑝)𝑛−1

=

∞∑︁
𝑛=𝑚+1

𝑛𝑝 (1 − 𝑝)𝑛−1 −𝑚
∞∑︁

𝑛=𝑚+1

𝑝 (1 − 𝑝)𝑛−1

=
(1 − 𝑝)𝑚

𝑝
+𝑚(1 − 𝑝)𝑚 −𝑚(1 − 𝑝)𝑚 =

(1 − 𝑝)𝑚
𝑝

.

The seller can only obtain revenue from the buyers’ bought gacha pulls. Therefore, the seller’s

revenue with subsidies in fixed-probability gacha game is

𝑈𝑠 (𝑐, 𝑝,𝑚) = 𝐸𝑏 (𝜋∞,𝑚)𝑐 ·
(
1 − 𝐹 ( 𝑐

𝑝
)
)

=
(1 − 𝑝)𝑚

𝑝
· 𝑐 ·

(
1 − 𝐹 ( 𝑐

𝑝
)
)
<
𝑐

𝑝

(
1 − 𝐹 ( 𝑐

𝑝
)
)
,

where the
𝑐
𝑝

(
1 − 𝐹 ( 𝑐

𝑝
)
)
. The proof is thus completed. □

Theorem 6.2 For a whale property gacha game, where the winning probability at state 𝑆𝑖 is 𝑝𝑖 and
the cost for each gacha pull is 𝑐 , if𝑚 free gacha pulls are subsidized in this gacha game, only the
buyers with valuations greater than 𝜑𝑠 (𝑚) =

(∑∞
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
∏𝑖−1

𝑗=𝑚 (1 − 𝑝 𝑗 )
)
· 𝑐 will buy the gacha

pull when they run out all the free gacha pulls, and the seller’s revenue with𝑚 free gacha pulls is

𝑈𝑠 (𝑚) =
( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=1

(1 − 𝑝 𝑗 )
)
· 𝑐 ·

(
1 − 𝐹

(( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=𝑚+1

(1 − 𝑝 𝑗 )
)
· 𝑐

))
.

When arg max𝑈𝑠 (𝑚) > 0, subsidies can improve the seller’s revenue.

Proof. The expected number of free gacha pulls spent in the gacha game for buyers is

𝐸𝑠 (𝜋𝑚,𝑚) =
𝑚∑︁
𝑖=1

𝑖𝑝𝑖

𝑖−1∏
𝑗=1

(1 − 𝑝 𝑗 ).

If the buyers do not win the gacha game within𝑚 free gacha pulls, the buyer will be at state 𝑆𝑚+1.

The whale property guarantees that the optimal policy for the buyer is either 𝜋∞ and 𝜋𝑚 . The value

for the buyer with valuation 𝑅 at state 𝑆𝑚+1 is

𝑉𝜋∞ (𝑆𝑚+1) =
(
𝑝𝑚+1 +

∞∑︁
𝑗=𝑚+2

𝑝 𝑗

𝑗−1∏
𝑡=𝑚+1

(1 − 𝑝𝑡 )
)
𝑅 −

(
1 +

∞∑︁
𝑗=𝑚+2

𝑗−1∏
𝑡=𝑚+1

(1 − 𝑝𝑡 )
)
𝑐

= 𝑅 −
( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=𝑚+1

(1 − 𝑝 𝑗 )
)
· 𝑐.
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Therefore, only the buyers with high valuation, i.e., 𝑅 ≥ 𝜑𝑠 (𝑚) =
(∑∞

𝑖=𝑚+1
(𝑖 −𝑚)𝑝𝑖

∏𝑖−1

𝑗=𝑚 (1 − 𝑝 𝑗 )
)
·

𝑐 will buy and continue pulling the gacha game. Besides, the expected number of bought gacha

pulls in the gacha game is

𝐸𝑏 (𝜋∞,𝑚) =
( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=1

(1 − 𝑝 𝑗 )
)
.

Therefore, the seller’s revenue with subsidies in the whale property gacha game is

𝑈𝑠 (𝑚) = 𝐸𝑏 (𝜋∞,𝑚)𝑐 ·
(
1 − 𝐹

(( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=𝑚+1

(1 − 𝑝 𝑗 )
)
· 𝑐

))
=

( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=1

(1 − 𝑝 𝑗 )
)
· 𝑐 ·

(
1 − 𝐹

(( ∞∑︁
𝑖=𝑚+1

(𝑖 −𝑚)𝑝𝑖
𝑖−1∏
𝑗=𝑚+1

(1 − 𝑝 𝑗 )
)
· 𝑐

))
.

The proof is thus completed. □

Theorem 6.3 Consider a banner-based multi-item gacha game where there are 𝐾 banners, and the
buyer’s valuations on the 𝐾 items in these banners are 𝑅1, 𝑅2, . . . , 𝑅𝐾 . Suppose the buyer is currently at
the 𝑖-th banner with𝑚 accumulated free gacha pulls subsidized by the seller. There are three possible
scenarios:

• If 𝑅𝑖 ≥ 𝐸 (𝜋∞) · 𝑐 , the buyer will use his free gacha pulls to pull the gacha game in this banner,
and if he uses out all the free gacha pulls, he will buy the gacha pull and pull it until he wins in
this banner.

• If 𝑅𝑖 < 𝐸 (𝜋∞) · 𝑐 , and there exists a banner 𝑗 (𝑖 < 𝑗 ≤ 𝐾), such that 𝑅 𝑗 ≥ 𝐸 (𝜋∞) · 𝑐 , then the
buyer would not buy any gacha pull and pull it before the 𝑗-th banner. The buyer will use the
free gacha pulls to pull in the 𝑗-th banner until he wins. After exhausting all the free gacha pulls,
he will buy the gacha pulls and use them to pull in the gacha game until he wins.

• If 𝑅 𝑗 < 𝐸 (𝜋∞) · 𝑐,∀𝑗 ∈ [𝑖, 𝐾], let 𝑘∗ = arg max𝑘∈[𝑖,𝐾 ] 𝑅𝑘 , then the buyer would not buy any
gacha pull and pull it before the 𝑘∗-th banner, and uses the free gacha pulls to pull in the 𝑘∗-th
banner until he wins. If 𝑅𝑘∗ < 𝐸 (𝜋∞, 𝑆𝑚+1) · 𝑐 , when the buyer uses out all the free gacha pulls
in the 𝑘∗-th banner, he will stop pulling the gacha. Otherwise, 𝑅𝑘∗ ≥ 𝐸 (𝜋∞, 𝑆𝑚+1) · 𝑐 , when the
buyer uses out all the free gacha pulls in the 𝑘∗-th banner, he will buy the gacha pull and pull it
until he wins in this banner.

Here 𝐸 (𝜋∞) denotes the expected number of gacha pulls needed to win the gacha game, and 𝐸 (𝜋∞, 𝑆𝑚+1)
denotes the expected number of gacha pulls needed to win the gacha game when the buyer is at state
𝑆𝑚+1, which is formulated in Lemma 3.3.

Proof. For the first case where 𝑅𝑖 ≥ 𝐸 (𝜋∞) · 𝑐 , the buyer will pull the gacha even without the

subsidies. So the buyer will use his free gacha pulls to pull the gacha game in this banner, and if he

uses out all the free gacha pulls, he will buy the gacha pull and pull it until he gets the desired item

in this banner.

For the second case where 𝑅𝑖 < 𝐸 (𝜋∞) · 𝑐 , and there exists a banner 𝑗 (𝑖 < 𝑗 ≤ 𝐾), such that

𝑅 𝑗 ≥ 𝐸 (𝜋∞) · 𝑐 , we will first prove that the buyer will not pull the gacha in the 𝑛-th round in the

𝑗 − 1-th banner when 𝑛 > 𝑚, which implies that the buyer will not buy the gacha pull in the 𝑗 − 1-th

banner. Then we will prove that by mathematical introduction, the buyer will not buy any gacha

pull before the 𝑗-th banner.

We have that 𝑅 𝑗−1 < 𝐸 (𝜋∞) · 𝑐 , therefore we have
𝑅 𝑗−1 − 𝑐 + 𝑅 𝑗 − 𝐸 (𝜋∞) · 𝑐 < 𝑅 𝑗 − 𝑐,
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which implies that in the 𝑗 − 1-th banner, the buyer will not buy the gacha in 𝑁 -th round. Then we

are going to show that if the buyer will not buy the gacha in the (𝑛 + 1)-th round, he will also not

buy the gacha in 𝑛-th round (𝑛 > 𝑚). Equivalently, we need to prove the following inequality:

𝑝𝑛 (𝑅 𝑗−1 +𝑉𝜋∞ (𝑆1, 𝑅 𝑗 )) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅 𝑗 ) < 𝑉𝜋∞ (𝑆𝑛, 𝑅 𝑗 )
⇒𝑝𝑛 (𝑅 𝑗−1 +𝑉𝜋∞ (𝑆1, 𝑅 𝑗 )) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅 𝑗 ) < 𝑝𝑛𝑅 𝑗 − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅 𝑗 )
⇒𝑝𝑛 (𝑅 𝑗−1 + 𝑅 𝑗 − 𝐸 (𝜋∞)𝑐) < 𝑝𝑛𝑅 𝑗
⇒𝑅 𝑗−1 − 𝐸 (𝜋∞)𝑐 < 0

By mathematical induction, we can prove that the buyer will not buy the gacha in the (𝑛)-th round

∀𝑛 > 𝑚. Then in the 𝑗 − 2-th banner, similarly we have

𝑝𝑛 (𝑅 𝑗−2 +𝑉𝜋∞ (𝑆1, 𝑅 𝑗 )) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅 𝑗 ) < 𝑉𝜋∞ (𝑆𝑛, 𝑅 𝑗 )
⇒𝑝𝑛 (𝑅 𝑗−2 +𝑉𝜋∞ (𝑆1, 𝑅 𝑗 )) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅 𝑗 ) < 𝑝𝑛𝑅 𝑗 − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅 𝑗 )
⇒𝑝𝑛 (𝑅 𝑗−2 + 𝑅 𝑗 − 𝐸 (𝜋∞)𝑐) < 𝑝𝑛𝑅 𝑗
⇒𝑅 𝑗−2 − 𝐸 (𝜋∞)𝑐 < 0

Recursively, we can prove that the buyer would not buy any gacha pull and pull it before the 𝑗-th

banner.

For the third case where 𝑅 𝑗 < 𝐸 (𝜋∞) · 𝑐,∀𝑗 ∈ [𝑖, 𝐾], if 𝑅𝑘∗ < 𝐸 (𝜋∞, 𝑆𝑚+1) · 𝑐 , buy any gacha

pull will leave the buyer’s surplus being negative, thus the buyer will never buy any gacha pull. If

𝑅𝑘∗ > 𝐸 (𝜋∞, 𝑆𝑚+1) · 𝑐 , we will first prove that the buyer will not pull the gacha in the 𝑛-th round in

the 𝑘∗ − 1-th banner when 𝑛 > 𝑚, which implies that the buyer will not buy the gacha pull in the

𝑘∗ − 1-th banner. Then we will prove that by mathematical introduction, the buyer will not buy

any gacha pull before the 𝑘∗-th banner. We have that 𝑅𝑘∗−1 < 𝑅𝑘∗ , therefore we have

𝑅𝑘∗−1 − 𝑐 < 𝑅𝑘∗ − 𝑐,
which implies that in the 𝑘∗ − 1-th banner, the buyer will not buy the gacha in 𝑁 -th round. Then

we are going to show that if the buyer will not buy the gacha in the (𝑛 + 1)-th round, he will also

not buy the gacha in 𝑛-th round (𝑛 > 𝑚). Equivalently, we need to prove the following inequality:

𝑝𝑛 (𝑅𝑘∗−1) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅𝑘∗ ) < 𝑉𝜋∞ (𝑆𝑛, 𝑅𝑘∗ )
⇒𝑝𝑛 (𝑅𝑘∗−1) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅𝑘∗ ) < 𝑝𝑛𝑅𝑘∗ − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅𝑘∗ )
⇒𝑅𝑘∗−1 < 𝑅𝑘∗

By mathematical induction, we can prove that the buyer will not buy the gacha in the (𝑛)-th round

∀𝑛 > 𝑚. Then in the 𝑘∗ − 2-th banner, similarly we have

𝑝𝑛 (𝑅𝑘∗−2) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅𝑘∗ ) < 𝑉𝜋∞ (𝑆𝑛, 𝑅𝑘∗ )
⇒𝑝𝑛 (𝑅𝑘∗−2) − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅𝑘∗ ) < 𝑝𝑛𝑅𝑘∗ − 𝑐 + (1 − 𝑝𝑛)𝑉𝜋∞ (𝑆𝑛+1, 𝑅𝑘∗ )
⇒𝑅𝑘∗−2 < 𝑅𝑘∗

Recursively, we can prove that the buyer would not buy any gacha pull and pull it before the 𝑗-th

banner. The proof is thus completed. □

E DETAILED CALCULATIONS OF THE EXAMPLES
Example 1. There is a buyer who has the valuation of 100 and his budget 𝐵 follows the distribution

that 𝑃 (𝐵 = 50) = 0.5, 𝑃 (𝐵 = 100) = 0.5. The maximum seller’s revenue achieved by the “take-it-or-

leave-it” strategy is 50, whereas the fixed-probability gacha game with the probability being 0.01

and the price for each gacha pull being 1, can achieve the seller’s revenue of 51.448.
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Proof. The optimal “take-it-or-leave-it” strategy is either to set the price to be 50, where the

buyer will buy the item and the seller’s revenue is 50, or to set the price to be 100, where only when

the buyer has the budget of 100 would buy the item and the seller’s revenue is also 100 ∗ 0.5 = 50.

For the fixed-probability gacha game with the probability being 0.01 and the price for each gacha

pull being 1, the analysis goes as follows. Firstly, we will show that the buyer would pull the gacha

game until he wins or his budget is exhausted. This is because pulling the gacha game provides a

non-negative profit for the buyer, i.e. 𝑝𝑅−𝑐 ≥ 0. Then we know that when the buyer has the budget

of 50, his optimal policy is 𝜋50. According to Lemma 3.3, the expected number of gacha pulls the

buyer buys is 𝐸 (𝜋50, 𝑆1) = 39.499. Similarly, when the buyer has the budget of 50, his optimal policy

is 𝜋100, and the expected number of gacha pulls the buyer buys is 𝐸 (𝜋100, 𝑆1) = 63.397. Therefore,

the expected number of gacha pulls that the seller sells is 0.5 ∗ 𝐸 (𝜋50, 𝑆1) + 0.5 ∗ 𝐸 (𝜋100, 𝑆1) = 51.448.

With the price of each gacha pull being 1, the expected seller’s revenue is 51.448, which is greater

than that of the “take-it-or-leave-it” strategy. This demonstrates the efficiency of the gacha game

when facing budget-constrained buyers. □

Example 2. Suppose that there are two items in the sequential gacha game, i.e., 𝐾 = 2. The

buyer’s valuations for these two items are independently and identically distributed (i.i.d.), and

follow the uniform distribution [0, 1]. By separately selling these two items at the same price, the

maximum seller’s revenue is 0.5. With the reset-after-winning mechanism, the maximum seller’s

revenue that the sequential gacha game can achieve is 0.516. While for the sequential gacha game

with the succeed-after-winning mechanism and pity system where 𝑁 = 100, 𝑝𝑖 = 0.172,∀𝑖 < 𝑁 and

𝑃𝑁 = 1 and the price of the gacha pull 𝑐 = 0.01, the seller’s revenue is 0.5218.

Proof. We first investigate the maximum seller’s revenue achieved by separately selling these

two items at the same price. Since the buyer’s valuations on these two items are independently and

identically distributed from the same distribution, we can turn to investigate the optimal pricing

problem for one item. According to the single-item single-bidder Myerson auction, the seller’s

revenue with the reserved price 𝑟 is

Revenue(𝑟 ) = 𝑟 · (1 − 𝑟 ).

Thus, the optimal price is 0.5, and the maximum seller’s revenue on one item is 0.25. Therefore, the

maximum seller’s revenue achieved by separately selling these two items is (0.25 ∗ 2 = 0.5), with
the price of each item being 0.5.

We will next derive the optimal gacha game design with the reset-after-winning mechanism in

the sequential gacha game. For convenience, we denote the buyer’s valuation on the first item as

𝑅1 and the buyer’s valuation on the second item as 𝑅2. Firstly, we consider the case where we sell

these two items sequentially with the price of the first item being 𝑥 and the price of the second

item being 𝑦 (𝑥 ≤ 1, 𝑦 ≤ 1). Then there are the following possible scenarios:

(1) When 𝑅1 ≥ 𝑥 and 𝑅2 ≥ 𝑦, the buyer will buy the first item and the second item. In this case,

the seller can obtain a revenue of 𝑥 + 𝑦.
(2) When 𝑅1 ≥ 𝑥 but 𝑅2 < 𝑦, the buyer will buy the first item and quit without buying the second

item. In this case, the seller can obtain a revenue of 𝑥 .

(3) When 𝑅1 < 𝑥 but 𝑅1 + 𝑅2 ≥ 𝑥 + 𝑦, the buyer will buy the first item and the second item. In

this case, the seller can obtain a revenue of 𝑥 + 𝑦.
(4) Otherwise, the buyer will buy nothing, and the seller can obtain zero revenue.

Since 𝑅1 and 𝑅2 are independently and identically distributed from the uniform distribution

[0, 1], we can calculate the probability of each scenario. Figure 4 demonstrates the distribution area

of each scenario. Because scenario (d) does not affect the seller’s revenue, we only focus on the
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(a) Distribution area of scenario (a) and (b)

+ = +

(b) Distribution area of scenario (c)

Fig. 4. Distribution area of each scenario

probability of scenario (a), (b), (c), which is listed as follows:

Pr((𝑎)) = (1 − 𝑥) · (1 − 𝑦),
Pr((𝑏)) = (1 − 𝑥) · 𝑦,

Pr((𝑐)) =
{
(1 − 𝑥 − 𝑦 + 1 − 𝑦) ∗ 𝑥/2, 𝑥 + 𝑦 ≤ 1,

(1 − 𝑦)2/2, otherwise.

Therefore, the seller’s expected revenue with price 𝑥,𝑦 is

Revenue(𝑥,𝑦) = Pr((𝑎)) · (𝑥 + 𝑦) + Pr((𝑏)) · 𝑥 + Pr((𝑐)) · (𝑥 + 𝑦)

= (1 − 𝑥) (𝑥 + 𝑦 (1 − 𝑦)) +
{
(2 − 𝑥 − 2𝑦)𝑥/2 · (𝑥 + 𝑦), 𝑥 + 𝑦 ≤ 1,

((1 − 𝑦)2)/2 · (𝑥 + 𝑦), otherwise.

According to Theorem 4.10, we can consider the equivalent price of an item in the sequential

gacha game with reset-after-winning mechanism as 𝐸 (𝜋∞) ·𝑐 , where 𝐸 (𝜋∞) is the expected number

of gacha pulls needed to win the game and 𝑐 is the price of each gacha pull. In the sequential gacha

game with the reset-after-winning mechanism, the equivalent prices of these two items are the

same, i.e., 𝑥 ≡ 𝑦 ≡ 𝐸 (𝜋∞) · 𝑐 . Therefore, to figure out the optimal design for the sequential gacha

game with the reset-after-winning mechanism, we need to derive the maximum of the following

function:

𝑓 (𝑥) = Revenue(𝑥,𝑦 = 𝑥) = Pr((𝑎)) · (𝑥 + 𝑦) + Pr((𝑏)) · 𝑥 + Pr((𝑐)) · (𝑥 + 𝑦), 𝑥 ∈ [0, 1] .
Then we have

𝑥∗ = arg max 𝑓 (𝑥) = 0.43425853,

max 𝑓 (𝑥) = 𝑓 (𝑥∗) = 0.5161512329820706.

Therefore, in the sequential gacha game with reset-after-winning mechanism, the maximum seller’s

revenue is 0.516.

We now investigate the sequential gacha game with a hard pity system and the succeed-after-

winning mechanism. For convenience, we consider a hard pity gacha game where 𝑁 = 100, 𝑝𝑁 = 1

and 𝑝𝑖 ≡ 𝑝,∀𝑖 < 𝑁 and the price of the gacha pull 𝑐 = 0.01. With the succeed-after-winning

mechanism, if the buyer wins the gacha game firstly at 𝑆𝑁 , he will be at the next state 𝑆𝑁+1.
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Mathematically, ∀𝑖 > 𝑁, 𝑝𝑖 = 𝑝𝑖 mod 𝑁 . To figure out the optimal design for this gacha game, we

need to derive a proper probability 𝑝 such that the seller can achieve the maximum revenue.

According to Lemma 3.3, the expected number of gacha pulls needed to win the above hard pity

gacha game when buyer is at state 𝑆𝑖 is

𝐸 (𝜋∞, 𝑆𝑖 ) =
1 − (1 − 𝑝)𝑁−𝑖+1

𝑝
.

Therefore, the expected number of gacha pulls needed to win the gacha game once is

𝐸1 = 𝐸 (𝜋∞, 𝑆1) =
1 − (1 − 𝑝)𝑁

𝑝
.

According to Proposition 3, the expected number of gacha pulls needed to win the gacha game

twice is

𝐸2 = 𝐻 (2, 1) = (1 − 𝑝)𝑁−1

(
𝑁 + 1 − (1 − 𝑝)𝑁

𝑝

)
+
𝑁−1∑︁
𝑖=1

𝑝 (1 − 𝑝)𝑖−1

(
𝑖 + 1 − (1 − 𝑝)𝑁−𝑖

𝑝

)
.

In the gacha game with succeed-after-winning mechanism, there are the possible scenarios:

(1) When 𝑅1 ≥ 𝑥 = 𝐸1 · 𝑐 , the buyer will first pull the gacha game until he wins. Assume that the

buyer wins the gacha game for the first time at state 𝑆𝑖 . if 𝑅2 ≥ 𝑦 = 𝐻 (1, 𝑖 + 1) · 𝑐 , the buyer
will continue pulling the gacha game until he wins again. In this case, the seller can obtain a

revenue of (𝑥 + 𝑦) = (𝐸1 + 𝐻 (1, 𝑖 + 1)) · 𝑐 .
(2) When 𝑅1 ≥ 𝑥 = 𝐸1 · 𝑐 , the buyer will first pull the gacha game until he wins. Assume that the

buyer wins the gacha game for the first time at state 𝑆𝑖 . If 𝑅2 < 𝑦 = 𝐻 (1, 𝑖 + 1) · 𝑐 , the buyer
will quit. In this case, the seller can obtain a revenue of 𝑥 = 𝐸1 · 𝑐 .

(3) When 𝑅1 ≥ 𝑥 = 𝐸1 · 𝑐 and 𝑅1 + 𝑅2 ≥ 𝐸2 · 𝑐 , the buyer will continue pulling the gacha game

until he wins twice. In this case, the seller can obtain an expected revenue of 𝐸2 · 𝑐 .
(4) Otherwise, the buyer will never pull the gacha game, and the seller can obtain zero revenue.

Here 𝐻 (𝑡, 𝑖) denotes the expected number of gacha pulls needed to win the gacha game 𝑡 more

times when the buyer is at state 𝑆𝑖 , which is formulated in Proposition 3. Here we have

𝐻 (1, 𝑖 + 1) =
{

1−(1−𝑝 )𝑁
𝑝

, 𝑖 = 𝑁,

1−(1−𝑝 )𝑁 −𝑖

𝑝
, otherwise.

Similar to the previous analysis, the seller’s expected revenue is

Revenue(𝑝) = (1 − 𝐸1𝑐) · 𝑐
(
𝑁∑︁
𝑖=1

𝑝𝑖 mod𝑁 (1 − 𝑝)𝑖−1 (𝑖 + (1 − 𝐻 (1, 𝑖 + 1) · 𝑐) · 𝐻 (1, 𝑖 + 1))
)

+
{
(2 + 𝐸1𝑐 − 2𝐸2𝑐) · (𝐸1𝑐)/2 · 𝐸2𝑐, 𝐸2 · 𝑐 ≤ 1,

(1 − 𝐸2𝑐 + 𝐸1𝑐)2/2 · 𝐸2𝑐, otherwise.

Using the “SLSQP” method in Python, we can obtain the maximum seller’s revenue as follows:

𝑝∗ = arg max Revenue(𝑝) = 0.01722628,

maxRevenue(𝑝) = Revenue(𝑝∗) = 0.5218329662856214.

Thus, for the sequential gacha game with the succeed-after-winning mechanism where 𝑁 =

100, 𝑝𝑖 = 0.172,∀𝑖 < 𝑁 and 𝑃𝑁 = 1, and the price of the gacha pull 𝑐 = 0.01, the seller’s revenue is

0.5218. □
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Example 3. Consider that buyer is budget-constrained and get some periodical income 𝐼 = 50 in

the time frame of each banner, such as monthly salary. There are two banners in this game and the

buyer’s valuation of the reward in these banners are 𝑅1 = 100, 𝑅2 = 50. The price for each gacha

pull is 𝑐 = 1. Consider the banner-based gacha game where 𝑁 = 100, 𝑝𝑖 = 0.01,∀𝑖 < 𝑁 and 𝑝𝑁 = 1.

• With the reset-after-opt-out mechanism, the buyer will pull in the first banner and will never

pull in the second banner. In this case, the seller’s expected revenue is 39.499.

• With the succeed-after-opt-out mechanism, the buyer will first pull in the first banner. If the

buyer exhausts his budget but fails to win in the first banner, the buyer’s state will be inherited

to the second banner, which will lower the cost to win in the second banner. Therefore, the

buyer will pull in the second banner. In this case, the seller’s expected revenue is 63.397.

Proof. In the first banner, the buyer has a budget of 50. According to Lemma 3.1, we have that

𝑉𝜋50
(𝑆1) = 0 ≥ 0. According to Lemma 4.3, the gacha game has the whale property. Therefore,

the optimal policy for the buyer in the first banner is 𝜋50. Based on Lemma 3.3, we know that the

expected number of gacha pulls the buyer spends on the first banner is 𝐸 (𝜋50, 𝑆1) = 39.499.

With the reset-after-opt-out mechanism, the buyer’s state will be reset to 𝑆1 in the second banner.

In the second banner, according to Lemma 3.1, we have that 𝑉𝜋50
(𝑆1) = −19.750 < 0. The whale

property of the gacha game implies that the optimal policy for the buyer in the second banner is

𝜋0. Therefore, with the reset-after-opt-out mechanism, the seller’s expected revenue is 39.499.

With the succeed-after-opt-out mechanism, there are two possible scenario:

(1) If the buyer wins the gacha game in the first banner within 50 gacha pulls, the buyer’s state

in the second banner will be 𝑆1. Similarly, the buyer would not pull in the second banner.

(2) If the buyer does not win the gacha game in the first banner within 50 gacha pulls, the

buyer’s state in the second banner will be 𝑆51. And in the second banner, the buyer will

has another budget of 50. In the second banner, according to Lemma 3.1, we have that

𝑉𝜋100
(𝑆51) = 10.501 > 0. Therefore, the optimal policy for the buyer in the second banner is

𝜋100, i.e., continue pulling until he wins.

Considering these two possible scenario, the expected seller’s revenue in the banner-based gacha

game with the succeed-after-opt-out mechanism is

Revenue = 𝐸 (𝜋50, 𝑆1) + (1 − 𝑝)50 · 𝐸 (𝜋100, 𝑆51) = 63.397.

Thus, when the buyer has budget constraint, the succeed-after-opt-out mechanism can help to

achieve a higher seller’s revenue. □

Example 4. Consider a banner-based multi-item gacha game with 2 banners. The buyer’s

valuations of the item in these 2 banners are 𝑅1 = 50 and 𝑅2 = 100. Each banner is a gacha game

where 𝑁 = 100, 𝑝𝑖 = 0.01,∀𝑖 < 𝑁 and 𝑝𝑁 = 1. According to Theorem 5.2, without any subsidies,

the buyer will only pull in the second banner, which will lead to the expected seller’s revenue being

63.397. If the seller subsidizes the buyer as it does in the single-item gacha game, according to

Theorem 6.2, the seller should give the buyer 32 free gacha pulls in the first banner and no free

gacha pull in the second banner, assuming that these subsidies will encourage the buyer to pull in

the first banner. However, Theorem 6.3 shows that a rational buyer will accumulate these subsidies

and only buy the gacha pull in the second banner, resulting in the lower expected seller’s revenue

being 35.895. In this case, the subsidies lead to the buyer’s grinding behavior and harm the seller’s

revenue.

Proof. According to Lemma 4.3, the gacha game has the whale property. In the first banner,

according to Lemma 3.1, we have that 𝑉𝜋∞ (𝑆1) = −19.750 < 0. Without any subsidies, the whale

property of the gacha game implies that the optimal policy for the buyer in the first banner is 𝜋0.
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And in the second banner, we have that𝑉𝜋∞ (𝑆1) = 36.603 > 0. Therefore, the optimal policy for the

buyer in the second banner is 𝜋∞. The expected number of gacha pulls the buyer will spends on

the second banner is 𝐸 (𝜋∞, 𝑆1) = 63.397. Therefore, without any subsidies, the expected seller’s

revenue is 63.397.

If the seller subsidizes the buyer as it does in the single-item gacha game, according to Theorem

6.2, the seller should give the buyer𝑚∗ = ⌈arg max𝑈𝑠 (𝑚)⌉ = 32 free gacha pulls in the first banner

and no free gacha pull in the second banner. However, according to Theorem 6.3, since𝑅1 < 𝐸 (𝜋∞) ·𝑐
and 𝑅2 ≥ 𝐸 (𝜋∞) · 𝑐 , the buyer will accumulate these subsidies and only buy the gacha pull in

the second banner. According to Theorem 6.2, the expected seller’s revenue is 𝑈𝑠 (32) = 35.895.

Therefore, in this case, the subsidies lead to the buyer’s grinding behavior and harm the seller’s

revenue. □

F RECOMMENDATIONS ON GACHA GAME MECHANISMS
In summary, we have the following recommendations for the seller:

• A whale property gacha game is always a good choice unless the seller wants to expand the

number of participants in the gacha game instead of pursuing revenue maximization.

• When selling a single item, the varying-probability gacha game with whale property and

the optimal design in Theorem 4.10 is recommended. The optimal design helps the seller to

achieve the maximum revenue, and the varying probability makes subsidy a useful tool for

the seller to increase his revenue when the buyer’s valuation is too low.

• When selling multiple items in the sequential gacha game, the reset-after-winning mechanism

is recommended due to its simplicity, widespread use, and asymptotic optimality.

• When selling multiple items in the banner-based gacha game, the seller is recommended to

adopt the succeed-after-opt-out mechanism, which is friendly to the buyer and can help the

seller to achieve a higher revenue when the buyer is budget-constrained.
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