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Abstract—DAG-based blockchain faces the key challenge of
transaction inclusion collision due to the high concurrency and
network delay. In this paper, we propose “We-TIPS”, the weak-
block-based transaction inclusion protocol with signaling to
tackle this key challenge. In We-TIPS, during the mining process,
the miner can broadcast their weak block header as a signal,
which can indicate the miner’s current transaction inclusion.
With the prompt broadcast of the signal, the miner can effectively
avoid the transaction inclusion collision and thus greatly boost the
system performance. Besides, we develop a transaction inclusion
game in We-TIPS to model miners’ interaction and further
show that it is a potential game. We propose a decentralized
transaction inclusion algorithm that can achieve the approximate
Nash equilibrium. Finally, we conduct intensive experiments to
demonstrate the superior performance of the We-TIPS.

Index Terms—blockchain network, performance analysis,
game theory

I. INTRODUCTION

The Internet of Things (IoT) and wireless networks are
rapidly transforming the way we interact with our environ-
ment, leading to a vast and interconnected network of devices,
sensors, and services [1], [2]. With the increased connectivity,
security, and reliability of these networks, there is a growing
need for a distributed and decentralized approach to managing
the vast amounts of data generated by IoT devices [3]. This is
where blockchain technology comes into play [4]. Blockchain
technology has emerged as a potential solution to address the
challenges of IoT data management by providing a secure and
decentralized platform for data exchange [5]–[7]. However,
the traditional blockchain architecture requires the explicit
confirmation of each block, which can result in delays and
inefficiencies in wireless networks with low bandwidth and
high latency. To overcome these limitations, a new type
of blockchain architecture has emerged, called the Directed
Acyclic Graph (DAG)-based blockchain [8]. The DAG-based
blockchain ensures that multiple transactions can be processed
simultaneously without the need for globally confirmed, which
is important for IoT applications.

While DAG-based blockchains offer many advantages for
wireless networks and IoT applications, one of the key
challenges they face is transaction inclusion collision [9].
This occurs due to high concurrency and network delays, as
miners may not have access to the most up-to-date infor-

mation about the blockchain, especially in wireless networks
with low bandwidth and high latency. As a result, the same
transactions may be included in concurrent blocks, leading
to redundant records in the blockchain. This collision in
transaction inclusion can waste block capacity and severely
degrade system performance, posing a significant challenge
for the effective implementation of DAG-based blockchains
in wireless networks and IoT applications [10].

Faced with this challenge, authors in [11] propose “TIPS”,
a transaction inclusion protocol with signaling in the DAG-
based blockchain. TIPS [11] includes a Bloom filter in the
block header which can indicate the included transactions,
and broadcast the block header as a signal when a miner
successfully mines a new block. Since the size of the signal
is small enough, the signal can be broadcast to the whole
blockchain network in a short time and effectively help the
miners to avoid transaction inclusion and thus significantly im-
prove the system performance. However, we notice that TIPS
only signals other miners when a new block is successfully
mined, which limits its performance improvement. To address
this problem, we propose “We-TIPS”, the weak-block-based
transaction inclusion protocol with signaling in DAG-based
blockchain, which can signal the miners during the mining
process to avoid transaction inclusion collision.

Before successfully mining a new block (i.e. finding the
solution to the hashing puzzle), the miner may find several
weak solutions that do not satisfy the full mining difficulty re-
quirement but also reflect a valid partial proof-of-work (PoW).
The block with the weak solution is called “weak block”.
This is similar to the partial proof-of-work, i.e., “shares”
in mining pools [12]. Similar to TIPS [11], we include the
Bloom filter into the block header so that a block header
can serve as a signal indicating the transactions included
in the block. Differently, instead of broadcasting the signal
only when a new block is mined, We-TIPS allows the miner
to broadcast the weak block header as a signal during the
mining process. With the prompt broadcast of the signal in
the weak block header, the miner can know other miners’
current transaction inclusion strategies, based on which, the
miner can adjust his mining strategy to avoid transaction
inclusion collision. Besides, to model the miners’ interaction
in We-TIPS, we develop a transaction inclusion game. We



show that the transaction inclusion game in We-TIPS is a
potential game. We further propose a decentralized transaction
inclusion algorithm that can achieve the approximate Nash
equilibrium. Both the theoretical analysis and experimental
validation support the high efficiency of the We-TIPS.

The key contributions of the paper are listed as follows:
• We propose a novel weak-block-based transaction inclu-

sion protocol with signaling (We-TIPS) in the DAG-based
blockchain. We-TIPS allows miners to broadcast their
weak block header as a signal during the mining process,
which can indicate the miners’ current transaction inclu-
sion strategies and help the miners to avoid the transaction
inclusion.

• We adopt a game-theoretic framework to model the min-
ers’ interaction in We-TIPS. We show that the transaction
inclusion game in We-TIPS can be modeled as a potential
game. Besides, we propose a decentralized transaction
inclusion algorithm that can achieve the approximate
Nash equilibrium.

• We provide some empirical results of the existing DAG-
based blockchain to demonstrate how transaction inclu-
sion collision degrades the system performance in reality.
Besides, we develop a DAG-based blockchain simulator
and conduct intensive experiments. The experiment re-
sults show that We-TIPS can achieve the nearly-optimal
performance. Specifically, We-TIPS can achieve more
than 98% utilization, while “TIPS” can achieve 90%
utilization and the current popular protocol “Conflux”
only achieve 72% utilization.

The rest of the paper is organized as follows. In Section
II, we introduce the system model of We-TIPS. In Section
III, we develop the transaction inclusion game in We-TIPS,
and propose a transaction inclusion algorithm to achieve the
approximate Nash equilibrium. In Section IV, we conduct
intensive experiments to demonstrate the efficiency of We-
TIPS. In Section V, we review related literature. Section VI
concludes the paper with the final remark.

II. SYSTEM MODEL

In this section, we introduce the system model of “We-
TIPS”, i.e., the weak-block-based transaction inclusion proto-
col with signaling in the DAG-based blockchain. The key fea-
ture of We-TIPS is that the miners in We-TIPS can broadcast
the signal using a weak block header indicating their current
transaction selection during the mining process, by which the
miners can coordinate their transaction inclusion strategies to
avoid transaction inclusion collision.

A. Model Overview

Figure 1 demonstrates the system model of We-TIPS. In
We-TIPS, during the mining process, each miner may find
some weak headers, which is a partial solution to the mining
puzzle. There is a Bloom filter [13] in the header, which can
indicate the transactions that the miner is currently mining
on. Therefore, the weak header can serve as a signal during
the mining process. Once a miner finds a weak header, he
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Fig. 1. System model of We-TIPS

will broadcast his weak header to other nodes. And when
receiving weak headers from other nodes, the miner will adjust
his transaction inclusion strategy to avoid transaction inclusion
collision. Once a miner successfully solves the mining puzzle
(finds a strong header), he will follow the TIPS protocol [11],
that is, he will broadcast the strong header first to further avoid
transaction inclusion collision.

B. Block Layout

In the PoW-based blockchain system, every miner tries to
solve a PoW puzzle by computing the hash function over a
newly created header. The header is constantly being changed
by modifying its nonce field, until a valid hash value is
found. Consistent with the definitions of [14], we denote the
block header that solves the PoW puzzle as a “strong header”
with its hash value h smaller than the strong target (mining
difficulty) Ts. The “weak header” is a block header whose
hash value does not meet the strong target Ts, but still are low
enough to prove a significant PoW, i.e. Ts ≤ h < Tw, where
Tw > Ts and Tw is the weak target. For convenience, we
denote β = Tw/Ts ≥ 1 as the weak block ratio in We-TIPS,
which demonstrates the expected number of weak/strong block
headers corresponding to each strong block header. Specially,
β = 1 indicates the scenario without weak blocks, where
the proposed We-TIPS degenerates to TIPS [11]. Similar to
TIPS [11], we insert the Bloom filter in the block header. A
Bloom filter is a space-efficient probabilistic data structure,
conceived by Burton Howard Bloom in 1970 [13], which is
used to test whether an element is a member of a set. We can
consider the block header with the Bloom filter as a signal in
our system, where the Bloom filter can indicate the selected
transactions in the block. As discussed in TIPS [11], the size
of the Bloom filter is small enough so that the block header
can be propagated through the whole network in a short time.

C. Mining Process

The mining process is shown in Algorithm 1. During the
mining process in We-TIPS, the miners’ behaviors of mining
and receiving the strong block header and block body are
consistent with those in TIPS. And the miner’s behaviors on
weak block headers are summarized as follows:

• When a miner finds a weak block header, it only needs
to broadcast the weak block header.



Algorithm 1: Mining process in We-TIPS
1 on MineBlock:
2 for nonce ∈ {0, 1, 2, · · · } do
3 header ← createHeader(nonce)
4 hash← H(header)
5 if hash < Ts then
6 // strong header
7 broadcast(header)
8 broadcast(body)
9 return

10 end
11 if hash < Tw then
12 // weak header
13 broadcast(header)
14 end
15 end

16 on ReceiveBlockHeader⟨header⟩
17 hash← H(header)
18 assert(validHeader(header) and hash < Tw)
19 BF ← getBloomFilter(header)
20 // Select the transactions hitting BF from transaction pool
21 TX ← getTransactionSet(BF, txpool)
22 if hash < Ts then
23 // strong header
24 Update transaction pool based on TIPS [11]
25 end
26 if hash < Tw then
27 // weak header
28 Update the selecting transactions based on Algorithm 2
29 end

30 on ReceiveBlockBody⟨body⟩
31 header ← getBlockHeader(body)
32 hash← H(header)
33 // We only handle the block body with strong header
34 assert(validBody(body) and hash < Ts)
35 Update transaction pool based on TIPS [11]

• When a miner receives a weak block header, it needs to
check the validation of the weak block header. If the weak
block header is valid, the miner will update his transaction
inclusion strategy to avoid transaction inclusion collision,
which will be discussed in Section III.

Note that the weak block header does not change the consensus
protocol in the DAG-based blockchain system. Thus We-TIPS
can be used as an “add-on” component, and can be applied to
most of the current DAG-based blockchain protocols.

D. Security Discussion

We consider the following two possible security threats
in We-TIPS, and show that We-TIPS can maintain system
security in long term.

• No-broadcasting the weak block header: In We-TIPS,
miners are not forced to broadcast the newly-mined weak
block header. However, broadcasting the newly-mined
weak block header can avoid other miners from selecting
the same transaction set, and thus improve the mining
revenue. No-broadcasting the weak block header does not
affect the system consensus, but will degrade the miner’s
revenue. Therefore, a rational miner will always broadcast
his weak block header.

• Constructing the misleading weak block header: A
miner can construct a misleading weak block header

that does not include the transactions he wants to mine.
However, each weak block header contains a partial PoW,
and the effort of constructing a misleading signal is at
least equal to that of honest mining. Therefore, it is not
profitable for a miner to construct a misleading signal.

III. TRANSACTION INCLUSION STRATEGY

In this section, we investigate the miners’ transaction in-
clusion strategies in We-TIPS. We first show that the miners’
interactions can be modeled as a multi-agent Markov decision
process (MMDP). To model the miner’s rationality, we inves-
tigate the miner’s transaction inclusion strategy from a game-
theoretical perspective. We show that the transaction inclusion
game in We-TIPS is a potential game and further propose a
transaction inclusion algorithm that can achieve the approxi-
mate Nash equilibrium with a good system performance.

A. Blockchain Modeling

We consider a DAG-based blockchain system with N min-
ers, where the block generation process follows the Poisson
process with a rate λ. We denote the effective network prop-
agation delay as ∆. Each miner maintains a transaction pool
containing at most m transactions. Due to the block size limit,
each block can contain at most n transactions. Without loss of
generality, we assume that the transactions in the memory pool
are sorted in descending order by their transaction fees, and the
transaction fee of the transaction i is denoted as fi. Each miner
is rational and will choose his transaction inclusion strategy
to maximize his utility, which forms a transaction inclusion
game in We-TIPS.

B. Miners’ Behaviors Modeling

Since the block generation process follows the Poisson
process, which satisfies the memorylessness property, the
miners’ behavior can be modeled as a multi-agent Markov
decision process (MMDP).

1) Multi-agent Markov Decision Process: The multi-agent
Markov decision process (MMDP) of the mining process can
be represented as a tuple < N ,S, (Ai)i∈N , P, (Ri)i∈N >,
where N denotes the set of N miners in the DAG-based
blockchain system, with xi denoting the hash rate of miner
i and x = [x1, . . . , xN ] denoting the normalized hash rate
vector, i.e.,

∑N
i=1 xi = 1, xi ∈ [0, 1]; S is a set of states,

each state s ∈ S can be represented as a tuple < f,W,b >,
where f ∈ R1×m denotes the transaction fees of m transactions
in the memory pool, and W ∈ RN×m is a matrix denoting
the miners’ transaction selections in their previous weak
headers. Specially, W (i, j) = 1 denotes that the latest weak
header mined by miner i contains transaction j 1, otherwise
W (i, j) = 0. The symbol b ∈ RN×1 denotes the mining
results. bi = 1 implies that the miner i successfully solves
the PoW puzzle, i.e., finds the strong block header. Otherwise
bi = 0. The symbol Ai ∈ R1×m denotes the action of miner
i. Specially, Ai,j = 1 implies that the miner i includes the

1When we say the block header contains transaction j, it implies that the
transaction j hits the Bloom Filter in the block header.



transaction j in a block and mines on that. Otherwise, we
have Ai,j = 0. Since there are at most n transactions in
a block, we have ||Ai||1 =

(∑m
j=1 Ai,j

)
≤ n,∀i ∈ N ,

where || · ||1 is the Manhattan norm of a vector. Typically,
we consider the case when ||Ai||1 = n, ∀i ∈ N . Fur-
thermore, the joint actions of miners can be represented as
A = A1 × . . . × AN ∈ RN×m. Ri(s,A) is the reward of
miner i at state s with the joint actions A. P is the probability
transition function that describes state transition, conditioned
on the past states s and joint actions A. This game satisfies
the Markov property due to the memorylessness of the mining
process, i.e., P [st+1|st, At, . . . , s0, a0] = P [st+1|st, At].

2) Reward: Since the coinbase transaction reward is inde-
pendent of the miner’s transaction selection, for simplicity,
we only consider the transaction fee reward in the miner’s
revenue. And the miner can obtain the transaction fee reward
only when he successfully mines a strong block. Thus, the
weak block header in We-TIPS only serves as a signal, and
miners cannot get any reward from mining a weak block
header. Besides, if there exist ι miners who have successfully
mined a strong block with the same transaction i during the
network propagation period ∆, we assume that the expected
reward for any one of these miners on the transaction i is fi/ι,
i.e., assuming an equal network advantage for all miners. Note
that such a model of probabilistic and homogeneous network
advantage during the propagation period is common in the
previous study (e.g., [9], [15]).

3) State Transition: We consider the state that at least one
of the miners successfully solves the PoW puzzle and finds the
strong block header as the final state, i.e., s∗ =< f,W,b >
where b ̸= 0⃗ is a final state. The game ends at the final states
without any further state transitions and will restart at the
next step. We call the other states with b = 0⃗ as processing
states. With β = Tw/Ts denoting the difficulty ratio of mining
a strong block and weak block, the probability of transition
from the processing states to the final states is 1/β, and the
probability of transition from the processing states to other
processing states is 1 − 1/β. Specially, the probability of
miner i mining a weak header, and the state transfer from
the processing state s =< f,W, 0⃗ > to the processing state
s(i) =< f,W (i), 0⃗ > is

P
(
< f,W (i), 0⃗ > | < f,W, 0⃗ >,A

)
=

(
1− 1

β

)
xi,

where

W (i)(j, k) =

{
W (j, k), j ̸= i,

A(i, k), j = i.

The probability that at least one of the miners solves the PoW
puzzle and mines a strong block, and the state transfer from
the processing state s =< f,W, 0⃗ > to the final state s∗ =<
f,W,b > is formulated in the following lemma:

Lemma 1. The probability that the state transfers from the
processing state s =< f,W, 0⃗ > to the final state s∗ =<

f,W, b > is

P (s∗|s,A) = 1

β

(
(λ∆)||b||1−1

(||b||1 − 1)!
e−λ∆

)∑
π∈PK

|K|∏
i=1

xkπ(i)

1−
∑i−1

j=1 xkπj

,

where K = {i|bi = 1} denotes the set of miners who generates
a new block at the final state s∗.

Proof. At the final state s∗ =< f,W,b >, there are ||b||1
blocks generated in the blockchain system. Then (||b||1 − 1)
blocks are generated during the block propagation time ∆.
Since the block generation process follows the Poisson process
with a rate λ, the probability that (||b||1−1) blocks are gener-
ated during the block propagation time ∆ is (λ∆)||b||1−1

(||b||1−1)! e
−λ∆.

Denote the set K = {i|bi = 1} as the set of miners who
generates a new block at the final state s∗, and we have
|K| = ||b||1 and K ⊂ N . Then the problem of calculating
the probability that the miners in K mine new blocks given
the condition that |K| blocks will be generated is equivalent
to the sampling problem with varying probability without
replacement [16], where the normalized miners’ hash rates
x corresponds to their weights. Let PK denote the set of all
permutations of the elements of K. Then the probability that
the miners in K mine new blocks given the condition that |K|
blocks will be generated is

Pr(K) =
∑

π∈PK

|K|∏
i=1

xkπ(i)

1−
∑i−1

j=1 xkπj

. (1)

Since the probability of transition from the processing states
to the final states is 1/β, the probability that the state transfer
from the processing state s =< f,W, 0⃗ > to the final state
s∗ =< f,W,b > is

P (s∗|s,A) = 1

β

(
(λ∆)||b||1−1

(||b||1 − 1)!
e−λ∆

)∑
π∈PK

|K|∏
i=1

xkπ(i)

1−
∑i−1

j=1 xkπj

.

The proof is thus completed.

C. Game Analysis

For simplicity, in the following discussion, we assume that
the miners are homogeneous to enable tractable analysis. We
further show that the transaction inclusion game in We-TIPS
is a potential game.

When the miners are homogeneous, we know that the
expected reward for a miner to include a certain transaction
depends on the number of miners who also select the same
transaction, which is formulated in the following lemma.

Lemma 2. The expected reward for a miner to include
transaction j given that there are total c miners who decide
to include transaction j in their newly-mined block is

rj(c) =

∞∑
k=0

(λ∆)ke−λ∆

(
k−1∏
i=0

(N − 1− i)

)−1

·
min(c−1,k)∑

t=0

(
c− 1

t

)(
N − c

k − t

)
fj

t+ 1

 .



Proof. Denote the set K as the set of miners (except itself)
who generates a new block during the block propagation time
∆. Since the block generation process follows the Poisson
process with a rate λ, the probability that k blocks are
generated during the block propagation time ∆ is

Pr(|K| = k) =
(λ∆)k

k!
e−λ∆.

Then the probability that the miners in K mine new blocks
given the condition that |K| blocks will be generated can be
calculated using equation (1). As miners are homogeneous,
they have the same hash rate, i.e., xi = 1/N,∀i ∈ N . Then
equation (1) can be simplified as

Pr(K | |K| = k) = k!

(
k−1∏
i=0

(N − 1− i)

)−1

.

Denote the set C as the set of miners (except itself) who decide
to include transaction j in their newly-mined block, then we
have |C| = c − 1 and C ⊂ N . Therefore, at the final state
s∗, there will be |K ∩ C| miners who include transaction j in
their newly-mined block. Then the expected reward for these
miners on transaction j is fj/ (|K ∩ C|+ 1). Let t = |K ∩ C|,
then the number of combinations that leads to the expected
reward of fj/ (t+ 1) is

#Comb(t) =
(

|C|
|K ∩ C|

)
·
(

|N − C| − 1

|K| − |K ∩ C|

)
=

(
c− 1

t

)
·
(
N − c

k − t

) (2)

Therefore, the expected reward for a miner to include transac-
tion j given that there are total k miners who decide to include
transaction j in their newly-mined block is

rj(c) =

∞∑
k=0

Pr(|K| = k) · Pr(K) ·
min(c−1,k)∑

t=0

#Comb(t)


=

∞∑
k=0

 (λ∆)k

k!
e−λ∆ · k!

(
k−1∏
i=1

(N − 1− i)

)−1

·
min(c−1,k)∑

t=0

(
c− 1

t

)(
N − c

k − t

)
fj

t+ 1

 .

The proof is thus completed.

With the expected reward analysis, we can further show that
the transaction inclusion game in We-TIPS is a potential game.

Theorem 1. The transaction inclusion game in We-TIPS is
a potential game, where the utility for the miner i with joint
action A is

ui(A) =
∑

j∈{k|Ai,k=1}

rj(cj(A)),

where cj(A) denotes the number of miners including the
transaction j given the joint action A, and rj(c) denotes the
expected reward on transaction j given that there are totally

c miners selecting the transaction j, which is formulated in
Lemma 2, and the potential function is

Φ(A) =

m∑
j=1

cj(A)∑
k=1

rj(k),

where m is the number of transactions in the transaction pool.

Proof. Consider the case where a single miner changes its
strategy from Ai to Bi. Let ∆ui be the change in its cost
caused by the change in strategy, then we have

∆ui = ui(Bi, A−i)− ui(Ai, A−i)

=
∑

j∈{k|Bi,k=1∧Ai,k=0}

rj(cj(A) + 1)−
∑

j∈{k|Bi,k=0∧Ai,k=1}

rj(cj(A))

Let ∆Φ be the change in the potential caused by the change
in strategy, then we have

∆Φ = Φ(Bi, A−i)− Φ(Ai, A−i)

=
∑

j∈{k|Bi,k=1∧Ai,k=0}

rj(cj(A) + 1)−
∑

j∈{k|Bi,k=0∧Ai,k=1}

rj(cj(A))

Thus we can conclude that ∆ui = ∆Φ. And thus the
transaction inclusion game in We-TIPS is a potential game.
The proof is thus completed.

Since the transaction inclusion game in We-TIPS is a
potential game, it always has a pure strategy Nash equilibrium
and the finite improvement property [17]. This implies that any
asynchronous better response update process is guaranteed to
reach a pure strategy Nash equilibrium. This motivates the
algorithm design in the following section.

D. Transaction Inclusion Strategy in We-TIPS
The transaction inclusion strategy in We-TIPS is shown in

Algorithm 2. The miner will analyze other miners’ transaction
selection strategy based on the weak block headers they
broadcast, where

∑
i ̸=i∗ W (i, j) in line 7 in Algorithm 2

denotes the number of miners who select the transaction j in
their latest weak block header. After knowing other miners’
transaction selection strategies, the miner will estimate the
expected reward for each transaction based on Lemma 2 (line
8). Based on the estimation of each transaction, the miner will
adopt a myopic strategy and select the transactions with the
highest expected reward (line 1-5). In this way, the miner will
adopt the best response to other miners’ behaviors.

We first show that Algorithm 2 can achieve the η-
approximate Nash equilibrium in the following theorem.

Theorem 2. Algorithm 2 can achieve the η-approximate Nash
equilibrium, where

η = O

β−1N2 logN

n∑
j=1

fj

 .

Proof. We will show that Algorithm 2 will find a ϵ-
approximate Nash equilibrium with the potential function:

Φ(A) =

m∑
j=1

cj(A)∑
k=1

rj(k) ≤
m∑
j=1

nj(A)rj(1) ≤ N

n∑
j=1

fj .



Algorithm 2: Transaction Inclusion Strategy in We-
TIPS

Input: i∗, f,W, λ,∆ // the miner index i∗; transaction fee f;
transaction selection matrix W ; blockchain setting λ,∆

Output: T // The set of selected transactions
1 Function TransactionSelection(i∗, f,W, λ,∆):
2 for j = 1, . . . ,m do
3 Estimate the expected reward of transaction j, i.e., ej =

Estimate(i∗, f,W, λ,∆)
4 Select the transactions with the top-n reward as a set T
5 Return T

6 Function Estimate(i∗, f,W, λ,∆, j):
7 c =

∑
i ̸=i∗ W (i, j) + 1

8 r = rj(c) calculated by Lemma 2
9 Return r

When the miners are homogeneous, each miner has the same
probability 1/N to generate a new block. When a new weak
block is mined, the corresponding miner can publish his latest
transaction selection set. If the miner changes his transaction
inclusion strategy, we decrease the potential function Φ with a
least η. Otherwise, we have reached the η-approximate Nash
equilibrium. Similar to the Coupon collector’s problem [18],
the expected number of rounds before each miner generates a
weak block is θ(N logN), where N is the number of miners.
Therefore, before reaching the η-approximate equilibrium,
each θ(N logN) rounds will decrease Φ with a least η. Then
the expected number of rounds is at most

Φ(a)θ(N logN)

η
≤ ϵ−1N2 logN

n∑
j=1

fj .

Besides, the game ends when a strong block is mined. With
β = Tw/Ts denoting the difficulty ratio of mining a strong
block and weak block, the expected number of weak blocks
in each round is β. Therefore, we have that

θ

η−1N2 logN

n∑
j=1

fj

 ≤ θ(β).

Thus, we have

η = O

β−1N2 logN

n∑
j=1

fj

 .

The proof is thus completed.

According to Theorem 2, we can find that a larger weak
block ratio β indicates a smaller η. Specially, we can show
that when β is large enough, i.e., β → ∞, Algorithm 2 is
guaranteed to achieve the pure strategy Nash equilibrium.

Theorem 3. When the weak block ratio β is large enough,
i.e., β → ∞, Algorithm 2 is guaranteed to achieve the pure
strategy Nash equilibrium with probability 1.

Proof. Since the potential game has the finite improvement
property, we assume that after χ better response update, it can
reach the pure strategy Nash equilibrium. According to the

Coupon collector’s problem, the probability that there is no
better response update in r rounds (each weak block corre-
sponds to a single round) is that Pr(r) ≤

(
1− 1

N

)r ≤ e−r/N .
And the probability that there will be χ better response update
within χ · r rounds is that Pr(χ) ≥

(
1− e−r/N

)χ
. The game

ends when a strong header is mined with the probability 1/β.
And the number of total rounds in the game follows the
geometric distribution with the expected value µ = β and
variance σ2 = β2 − β. Using Chebyshev’s inequality, the
probability that there will be at least χṙ rounds is

Pr(χ · r) = 1−
χ·r∑
i=1

(1− 1

β
)i
1

β
≥ β2 − β

(β − χr)2

Let r =
√
β
χ , then the probability that Algorithm 2 will achieve

the pure strategy Nash equilibrium is

Pr(NE) = Pr(χ · r) · Pr(χ) ≥ β2 − β

(β −
√
β)2

·
(
1− e−

√
β

N

)χ
Thus we have limβ→∞ Pr(NE) = 1, which implies that
we can achieve the pure strategy Nash equilibrium with
probability 1 when β → ∞. The proof is thus completed.

Consistent with the equilibrium analysis in TIPS, when
the effective network propagation delay ∆ is small enough,
Algorithm 2 in We-TIPS is guaranteed to achieve the unique
Nash equilibrium as in TIPS.

Theorem 4. Selecting the transactions with the top-n trans-
action fee is the unique Nash equilibrium in this transaction
inclusion game when ∆ ≤ 1

λφ
(

fn+1

fn

)
and Algorithm 2 is

guaranteed to achieve the unique Nash equilibrium.

Proof. Since ∆ ≤ 1
λφ
(

fn+1

fn

)
is equivalent to 1−e−λ∆

λ∆ ≥
fn+1

fn
. We are going to prove that when 1−e−λ∆

λ∆ ≥ fn+1

fn
,

the unique Nash equilibrium in this transaction inclusion
game is to always include the transactions with the highest
transaction fee, i.e., the top n transactions. Initially, according
to Algorithm 2, all the miners will choose to include the
transactions with the highest transaction fee, and thus achieve
the Nash equilibrium and will not change their transaction
inclusion strategy.

Denote the transaction set A = {1, 2, · · · , n} as the top
n transactions with the highest fee, and transaction set B =
{n+1, · · · ,m} as the set of the remaining transactions. Then
according to Lemma 2, the expected reward for the transaction
in A is

rj = rj(N) =
1− e−λ∆

λ∆
fj ,∀j ∈ A,

and the expected reward for transaction in B is

rj = rj(1) = fj ,∀j ∈ B.

Then we have that

min
j∈A

rj = rn =
1− e−λ∆

λ∆
fn.



and that maxj∈B rj = rn+1 = fn+1. Since 1−e−λ∆

λ∆ ≥ fn+1

fn
,

we have that minj∈A ≥ maxj∈B, therefore transactions in
A are always the transactions with the highest expected
reward, none of the miners have the incentive to choose other
transactions, which reaches the equilibrium. The proof is thus
completed.

IV. PERFORMANCE EVALUATION

In this section, we first provide empirical results of Conflux
[19], one of the most popular DAG-based blockchain systems,
and show how transaction inclusion collision degrades its
system performance. Then we conduct experiments to demon-
strate the performance of We-TIPS, and further validate our
analysis.

A. Empirical Results of Conflux

Conflux is one of the most popular DAG-based blockchain
systems. To avoid transaction inclusion collision, Conflux
adopts the random transaction inclusion strategy with transac-
tion fee priority, that is, the miner will include the transaction
i in his block with probability pi, where p1

f1
= p2

f2
= · · · = pm

fm
.

We set up a full node of Conflux on a server with one AMD
Ryzen 5950X (16 cores 32 HT) CPU and 32 GB memory
to pull the latest blocks from the mainnet of Conflux. We
have collected the blocks in 1000 epochs (from 32289102-th
epoch to 32290102-th epoch), which includes total of 5584
transactions but only 4043 unique transactions, implying that
the block capacity utilization of Conflux is around 72.40%.
This implies that around 27.60% block capacity is wasted due
to the transaction inclusion collision.

B. Experiment Configuration

We develop a DAG-based blockchain simulator in Python
using Simpy [20]. The experimental configuration is as fol-
lows. We set the block size to 1MB, which is the current block
size limitation in Bitcoin. With the average transaction size
being 500 bytes, we put 2000 transactions in one block, i.e.,
n = 2000. Besides, we assume the size of the transaction pool
to be m = 10000. The propagation delay for the whole block
is a random variable following the normal distribution with
the expectation of ∆ = 10, and the propagation delay for the
signal is a random variable following the normal distribution
with the expectation of τ = 1. The block generation rate of
the DAG-based blockchain system λ ranges from 0.1 to 1.

C. Weak Block Ratio Design

Since the weak block ratio β will directly affect the perfor-
mance of We-TIPS as shown in Theorem 2, we first investigate
the impact of the weak block ratio β. Figure 2 demonstrates
the block utilization of We-TIPS with different weak block
ratios β. Specially, when β = 1, the We-TIPS degenerates to
TIPS. We can find that block utilization increases with the
weak block ratio. This is because a large β can provide more
accurate information for miners to avoid transaction inclusion
collision. However, due to the propagation delay of the weak
block header, when β is large, too many weak block headers

may be generated during the mining process, resulting in an
intensive network load. And some weak block headers may not
be broadcast to all the miners in time, leading to insignificant
improvement. As shown in Figure 2, β = 4 is the “elbow”
where the insignificant increase in the utilization is no longer
worth the additional increase on β. Thus, we take β = 4 in
our experiment.

D. Performance Results

To compare and further demonstrate the performance of
We-TIPS, we consider the following baselines in DAG-based
blockchain systems:

• “TIPS”: stands for transaction inclusion protocol in [11].
• “Priority”: stands for the random strategy with transaction

fee priority adopted by Conflux [19].
• “Equilibrium”: stands for the equilibrium strategy in the

standard DAG-based blockchain system [9].
• “Top”: stands for the top-n strategy in the standard

DAG-based blockchain system, where the miners always
include the transactions with the highest transaction fees.

• “We-TIPS”: stands for our proposed weak-block-based
transaction inclusion protocol with signaling.

Figure 3 shows the block capacity utilization of different
transaction inclusion protocols. We can find that We-TIPS
always achieves the highest utilization compared to TIPS and
the other protocols. Specially, when λ = 0.2, the “Prior-
ity” strategy can achieve 77% utilization, the “Equilibrium”
strategy can achieve 79% utilization, TIPS can achieve 90%
utilization, while We-TIPS can achieve the astonishing 98%
utilization. This implies that We-TIPS can effectively avoid
transaction inclusion collision. Figure 4 shows the system
throughput (TPS) of different transaction inclusion protocols,
which shows that We-TIPS also always achieves the highest
system throughput compared to TIPS and the other protocols.

V. RELATED WORK

In the inclusive blockchain protocols [9], the authors model
the transaction selection as a non-cooperative game with in-
complete information and propose a myopic strategy. Conflux
[19] models the transaction selection as a cooperative game
and distributes the transaction fee based on Shapley value
[21]. In [11], the authors propose “TIPS”, which introduces
a “signal” in the transaction selection game, and help to
improve the system performance by avoiding transaction in-
clusion collision after finding a new block. However, TIPS
only signals other miners when a new block is successfully
mined, which limits its performance improvement. Faced with
this limitation, we propose “We-TIPS”, the weak-block-based
transaction inclusion protocol with signaling in DAG-based
blockchain, which can signal the miners to avoid transaction
inclusion collision even during the mining process.

Employing weak solutions (and their variations) in Bitcoin
is an idea circulating on Bitcoin forums for many years [22],
[23]. Initial proposals leverage weak solutions (i.e., weak
blocks) for faster transaction confirmations [24], [25] and fork
selection rule [26]. Rizun proposes Subchains [27], where
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a chain of weak blocks bridging each pair of subsequent
strong blocks is created. In [14], the authors propose the
StrongChain based on the idea of the weak block to make the
mining process more transparent and collaborative. However,
the previous work mainly focuses on the application of weak
blocks in the linear blockchain. Along a different line, we
apply the weak block in DAG-based blockchain system and
design a novel signaling protocol.

VI. CONCLUSION

In this paper, we proposed a novel weak-block-based trans-
action inclusion protocol with signaling, We-TIPS, which
effectively avoids the transaction inclusion collision and
achieves near-optimal performance while maintaining system
security. Both the theoretical analysis and experiment results
significantly demonstrate the high efficiency of We-TIPS.

Multi-agent reinforcement learning (MARL) is an ideal tool
to capture the feature of the mining process in We-TIPS after
modeling the system as a multi-agent Markov decision process
(MMDP). Using MARL to explore a more efficient transaction
inclusion strategy will be one of our future works.
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