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Dynamical phase transitions of information flow in random quantum circuits
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We study how the information flows in many-body dynamics governed by random quantum circuits and
discover a rich set of dynamical phase transitions in this information flow. The phase-transition points and
their critical exponents are established across Clifford and Haar random circuits through finite-size scaling. The
flow of both classical and quantum information, measured respectively by Holevo and coherent information,
shows similar dynamical phase transition behaviors. We investigate how the phase transitions depend on the
initial location of the information and the final probe region, and find ubiquitous behaviors in these transitions,
revealing interesting properties about the information propagation and scrambling in this quantum many-body
model. Our paper underscores rich behaviors of the information flow in large systems with numerous phase
transitions, thereby sheds light on the understanding of quantum many-body dynamics.
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Introduction. Information flow in a quantum many-body
system usually accompanies the growth of quantum entan-
glement and drives the system toward thermalization [1].
Apart from being essential in understanding nonequilibrium
many-body physics, quantum dynamics about the informa-
tion flow is also closely related to black hole theory and
quantum gravity through the AdS/CFT correspondence [2,3].
Under short-range interactions, the propagation of informa-
tion is limited in a light-cone structure governed by the
Lieb-Robinson bound [4,5]. On the other hand, in the long-
time limit, quantum information scrambling [6,7] will occur
for generic chaotic quantum systems, such that information
initially encoded in localized degrees of freedom will spread
over the whole system and cannot be recovered by local op-
erations [5,8,9]. However, the detailed process between these
two extreme cases is less well understood and involves rich
phenomena like prethermalization [10], many-body localiza-
tion [11,12], and many-body scars [13,14].

Here we study the information retrievable from a subsys-
tem of an initially locally encoded system, whose temporal
derivative manifests the information flow. We adopt the ran-
dom quantum circuit ansatz as depicted in Fig. 1(a), which
is widely used to capture universal quantum dynamics in a
chaotic system without being exposed to the detailed Hamil-
tonian [15–19]. By considering the information flow as a
function of system parameters, we uncover a spectrum of
behaviors beyond the light-cone and scrambling dynamics.
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Specifically, the information flow undergoes sudden shifts and
can be used to delineate phase boundaries as a function of time
and other system parameters. Similar to how order parameters
switch from zero to nonzero values across a phase boundary,
it exhibits distinct behaviors as the ratio of evolution time
t to the system size N goes across the critical points in the
thermodynamic limit N → ∞, thereby exhibiting dynamical
phase transitions (DPTs). Note that there are various notions
of DPT in the literatures [20]. The most widely used definition
is based on the nonanalytical behavior of the Loschmidt echo
in closed many-body systems under Hamiltonian evolution
[21,22], which is deeply connected to conventional partition
functions. However, this definition has no direct counterpart
in random unitary circuits. On the other hand, DPT is defined
differently in open quantum many-body systems [23,24] and
under the scenario of computational complexity [25].

Our key observation is the existence of dynamical phase
transitions and their universality across both classical and
quantum information, as well as within Clifford and Haar ran-
dom circuits. We study their physical meanings by quantifying
the DPTs’ positions and critical exponents using finite-size
scaling. We study primarily the Clifford random circuits for
the convenience of large-scale numerical simulation [26–28],
and generalization is verified for generic quantum circuit
ansatz [29,30]. We also provide a general picture of informa-
tion propagation that applies to generic random circuit model
setups. The discovery of such rich phase transition behav-
ior sheds light on the understanding of quantum many-body
dynamics.

Dynamical phase transitions in information flow. Consider
an N-qubit quantum system with periodic boundary condition,
as shown in Fig. 1(a). We consecutively select S qubits as the
source of information S and M qubits as the measurement
subsystem M. We encode information into S , apply a random
circuit U , trace out the complement of M as the environment
E , and retrieve the information from M.
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FIG. 1. Model for probing information dynamics. (a) Informa-
tion is encoded into an S-qubit source in an N-qubit system with
periodic boundary condition. Then after t layers of brick-wall-
structured random circuits, we trace out the environment and retrieve
the information from the remaining M-qubit measurement subsys-
tem. Each “brick” (green rectangle) represents a random operation
between the two nearby qubits. Here N = 4 for illustration. (b) In
each two-qubit random operation, we first apply a CNOT gate. Then
independently for each qubit, we randomly apply a Hadamard or
phase gate diag(1, eiπ/2) with equal probability. (c) An example of
source and measurement subsystem. For ease of expression, they
are consecutively selected according to the 16 equal segments of the
system.

We first study the classical information dynamics in
the quantum system, and the quantum information will be
discussed later. We encode S bits by preparing each qubit in
S into |0〉 or |1〉 with equal probability. The rest of the qubits
are initialized as |0〉⊗N−S . We denote the set of all the 2S

possible initial states as {|ψi〉}2S

i=1. After the random circuit,
the extractable information can be quantified by the Holevo
information

H (U ) = Svn

(∑
i

piρ
M
i

)
−

∑
i

piSvn
(
ρM

i

)
(1)

where pi = 1
2S , ρM

i = TrE (U |ψi〉〈ψi|U †) is the density
matrix of U |ψi〉 in M, Svn denotes the von Neumann entropy.

The random circuit comprises t brick-wall layers, each cor-
responding to a unit of abstract time. Despite of stretched time
scale, the structure of information dynamics is uniform across
different probability distributions of the “bricks” over the Clif-
ford group (see the Supplemental Material, SM [31]). As illus-
trated in Fig. 1(b), we set each brick as a CNOT gate followed
by random single-qubit Clifford gates. We denote Ut as the set
of all possible t-layered unitaries constructed in this way.

With fixed s = S
N and m = M

N , we study our system un-
der increasing system sizes N . We numerically calculate
the time evolution of average Holevo information H (t ) =

1
|Ut |

∑
U∈Ut

H (U ) and normalize it by h(t ) = H (t )
N . The aver-

aged value h(t ) is sufficient to characterize each h(U ) for
generic U ∈ Ut because, as we show in the SM [31], its
variance over Ut vanishes in the large N limit. We also nor-
malize the time by τ = t

N .

As a representative example, we place a 2N
16 -qubit source

inside a 6N
16 -qubit measurement subsystem. The information

FIG. 2. Time evolution of average normalized Holevo informa-
tion h(τ ) under eight system sizes from N = 240 (blue) to N = 800
(red). We fix s ≡ S

N = 2
16 and the measurement subsystem m ≡ M

N =
6
16 . At the three DPT points,the curve becomes sharp as N grows. We
denote them from left to right as the τe, τa, and τs point. For the τa

point, we show an additional curve to illustrate its position. The inset
further demonstrates the transition by finite-size scaling of ∂τ h. We
find the critical exponent ν0 = 1.25 and scale the τ axis near each

of the three DPT points in the same way τ ′
i (τ ) = (τ − τi )N

1
ν0 where

i ∈ {e, a, s}. All of the eight curves collapse. Each data point in the
inset is obtained from over 6 × 104 samples.

dynamics h(τ ) is shown in Fig. 2. In the limit of large N ,
three sharp turns of the curve can be observed, indicating
discontinuous ∂τ h around the three points. Further verification
that they are DPT points and their physical meanings will be
discussed later. We denote them by their τ -axis position τe

(escape), τa (accelerate), and τs (scrambled). At early times
τ < τe, h(τ ) keeps its initial value s because the light-cones
starting from S are still inside M; at τe, information starts
to decrease by escaping through the left boundary of M.
When τ = τa, the rate of decreasing accelerates; after τ > τs,
the system becomes scrambled h(τ ) = 0, consistent with its
infinite-time limit [32].

To further verify and analyze the critical behavior, we
perform finite-size scaling near each of the three DPT points
τi, i ∈ {e, a, s}. The curves ∂τ h of different system sizes N
collapse when we scale the τ axis by the form τ ′

i (τ ) = (τ −
τi )N

1
ν0 where we find the critical exponent ν0 to be equal

for all i, as shown in the inset of Fig. 2. Thus, around each
τi, we can express ∂τ h of various N as a same function of
τ ′

i . Then taking the thermodynamic limit N → ∞, we ver-
ify the nonanalyticity of information dynamics ∂τ h(τi − 0) 
=
∂τ h(τi + 0). As will be discussed later, the critical exponent
ν0 is universal across various model configurations.

DPTs’ positions and physical implications. In order to
determine the physical meanings of the three DPT points, we
study how their positions can be determined by the selection
of S and M. We begin by determining the τ -axis positions
of the escape point τe and the scrambled point τs, before
discussing the accelerate point τa.

With fixed s and m, we move S from the middle to the
boundary of M, as shown in Fig. 3(a). By the periodic bound-
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FIG. 3. Dynamics of h(τ ) under different selections of the source
S and the measurement subsystem M. (a) We change the relative
position between S and M. We keep S inside M and fix s = 2

16 ,
m = 6

16 . Each group of curves is from various system sizes and
labeled by the corresponding relative position 16l , where l is the
normalized distance between the right boundaries of S and M. The
escape point’s position τe is proportional to l . The scrambled point τs

stays invariant. (b) We change 2
16 � m � 1

2 and fix S in the middle
of M. Each group of curves is labeled by 16m. τs is proportional to
m. For clarity, only part of the calculated h(τ ) curves are shown.

ary condition, this only changes the relative position of S and
M. We define the normalized distance l = L

N where L is the
minimal distance from the qubits in S to the boundaries of
M. When l decreases, τe decreases linearly. When l = 0, the
information can escape from M at the first circuit layer, and
the τe point disappears at τ = 0 as expected. We have τe(l ) =
l/ve. The scrambled point τs, which marks the transition from
h > 0 to h = 0, is independent of l . Such independence holds
for any arbitrary selection of S (see the SM [31]), as long as
h(τ ) is not exponentially so that τs does not vanish.

The scrambled point’s position varies when m changes, as
shown in Fig. 3(b) where we keep S fixed within M. For m <
1
2 , we observe a linear dependence τs(m) = m

2 /vs. Combined
with invariant τs for arbitrary selections of S , this implies that
no information can be retrieved from any consecutive sub-
system equal to or smaller than m after τs. Nonconsecutively
selected subsystems of size m are also scrambled. One can see
them scrambling faster by rearranging the qubits to make them
consecutive and the resulting circuit would contain longer-
range gates. We note that vs can be directly connected with
the entanglement velocity vE [30], as demonstrated by the
saturation of the entanglement entropy of M to its maximum
value at τs.

We further found vs = ve ≡ vI, which we denote as the in-
formation velocity. The above analysis can be summarized as

τe(l ) = l/vI

τs(m) = m/2vI
, (2)

which suggests a light-cone structure of information
propagation underpinning both the τe and τs points. τe is

the moment when light-cones emitted from the qubits in S
reach the boundary of M. Depending on whether they are
exiting or entering M, information starts to either decrease
or increase. On the other hand, τs is the moment when M
is entangled with M qubits, reflected by the light-cones
emitted from M covering 2vIts qubits outside of M. To
help understand the scrambling condition M

M+2vIts
� 1

2 , we
note that this condition also applies when regarding the total
M + 2vIts qubits as a maximally entangled system [32]. Such
picture is also applicable both when m > 1

2 and under the
open boundary condition (see the SM [31]).

Although successful in predicting τe and τs, the light-
cone picture cannot help understand the accelerate point τa.
Specifically, the τa point is not “the time when light-cones
start escaping from both ends of M”. For l = 0 (l = 1

16 )
in Fig. 3(a), information can only reach the left boundary
of M at τ = 4

16/vI (τ = 3
16/vI), later than the actual τa.

We further show that τa has a nonlinear dependence on the
model’s length-scale (see the SM [31]), suggesting that all
linear light-cone understandings are insufficient. Also, the
accelerate point still exists when S has no abrupt boundaries
(see the SM [31]).

We have discussed above only m < 1
2 . For m > 1

2 , the τe

and τs points still exist and are dominated by vI. A major
difference is that the τa point does not exist and, after τs, there
are nontrivial dynamics followed by another DPT, which we
denote as τr (recover). h reaches minimum at τs and saturates
to its nonzero infinite-time limit through τr points. More de-
tails can be found in the SM [31].

Dynamics of quantum information. Coherent information
quantifies the reliably transmitted qubits through a noisy
quantum channel. In quantum communication, it characterizes
the quantum channel capacity when the encoding scheme is
optimal [33,34]. In quantum error correction, it upper bounds
the number of qubits that can be recovered [35]. Using
coherent information as a quantum counterpart of the Holevo
information, we compare classical and quantum information
dynamics.

We now study the quantum information flow with similar
encoding scheme to that for the classical information. The
only difference is that the initial state of the source would
be an ensemble ρS = ( 1

2 I )⊗S . This is equivalent to mixing

the pure states {|ψi〉}2S

i=1 in the classical information model.
Applying random circuit U and tracing out the environment E
form a quantum channel. The resulting coherent information
CM can be calculated as [35,36]

CM = Svn(ρM) − Svn(ρE ) (3)

where ρM = TrE (U (ρS ⊗ |0〉〈0|⊗N−S )U †) is the density
matrix of M, and ρE is similarly defined by exchanging E
and M.

Like what we have done to the Holevo information, we
average the coherent information over Ut and define c = CM

N .
We calculate c(τ ) for various positions of S and M with their
sizes s and m fixed.

As shown in Fig. 4(a), when S is inside (outside) of M, c
is initialized at its upper (lower) bound, indicating that all of
the information are contained in M (lost into E). The escape
point’s position τe(l ) = l/vI is the same as that in the classical
information model, verifying its physical meaning. For S
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FIG. 4. Universality of DPT points in quantum circuit ansatz.
(a) Dynamics of average normalized coherent information c(τ ). We
again specify s = 2

16 and m = 6
16 . S is inside (outside) of M with the

boundary distance l = 1 (denoted as l = −1). For l = 1, up to three
DPT points τe, τa, and τr can be observed. Additionally, c crosses
from positive to negative at τs. For l = −1, the τa point does not exist
and a DPT at τs appears. (b) Information dynamics in Haar random
circuits (HRC, solid line) and uniform sampling Clifford random cir-
cuits (uCRC, dashed line). Here, we set the system size from N = 12
(blue) to N = 28 (red) and fix s = 1, m = 1

2 . h(τ ) in both systems
exhibit similar behavior. The inset shows the scaling behavior of

∂τ h|τs+δ
τs−δ ∝ N

1
ν0 under both HRC and uCRC where the same critical

exponent ν0 = 1.25 is applied. τs is from the thermodynamic limit of
uCRC and δ = 0.012 is a constant.

inside M, c turns from positive to negative at τs, indicating
that the amount of remaining quantum information turns to
none. This is in agreement with the DPT point τs in classical
information dynamics. c converges to its infinite-time limit −s
through the last DPT. Consistent with the classical model for
m > 1

2 , we denote it as the τr point.
We can understand the above phenomena in the context of

private classical information transmission [36–38]. We encode
classical information by {|ψi〉}2S

i=1 and give a penalty of −1
whenever one bit of information is leaked to and recoverable
from the environment. The result CM = HM − HE is exactly
the coherent information where HM and HE are the Holevo
information in M and E , respectively. For S outside of M,
HM stays almost zero so that CM ≈ −HE . HE stays at max-
imum until starts decreasing at the τe point. At the scrambled
point τs, HE reaches its minimum and starts recovering its
value until saturation at the τr point. With the size of E sat-
isfying N−M

N > 1+s
2 , E obtains all the S bits after τr while M

acquires no information.
One can also regard the random circuit here as the en-

coding operation in QEC [39–41]. Tracing E out would then
correspond to the qubit loss error, and CM is the number of
successfully preserved logical qubits. In our result for m < 1

2 ,
the information can never be perfectly recovered from M as
long as E has nonzero overlap with S , regardless of how deep
the encoding circuit is. On the other side, we can study the

case when m > 1
2 by exchanging E and M so that the qubits

in M instead of E are lost. From CE = −CM, all the encoded
quantum information can be recovered from E at the τr point.
Our result gives the minimum and sufficient circuit depth for
a perfect QEC recovery.

DPTs in Haar random circuits. To the best of our knowl-
edge, existing methods—either analytical or numerical—are
incapable of directly analyzing the information in large-scale
Haar random circuit (HRC) systems. We will demonstrate
that the DPT structure of information dynamics is universal
across HRC and Clifford random circuits. Within the precision
achievable with current methods, the critical exponent ν0 of
DPTs is also universal.

Specifically, we compare brick-wall circuits with two types
of 2-qubit bricks: those generated from Haar random unitary,
and those generated by uniformly sampling the Clifford group
(uCRC), the latter being a unitary 2-design [42]. For an arbi-
trary pure initial state |ψi〉, the two circuits produce identical
average purity of M [30]. In order to reduce the finite-size
drifts, we fix s = 1, m = 1

2 , which gives a simple information
dynamics containing only one DPT point τs.

As shown in Fig. 4(b), h(τ ) of HRC for small system sizes
N � 28 behave similarly to uCRC. We further demonstrate
the universality of the critical exponent ν0 = 1.25 in the inset.

For fixed δ satisfying δN
1
ν0  1, ∂τ h|τs+δ

τs−δ ≡ ∂τ h(τs + δ) −
∂τ h(τs − δ) of uCRC should be proportional to N

1
ν0 . This

can be concluded from the collapsed ∂τ h(τ ′) in the inset of
Fig. 2 with nonzero slope near τ ′ = 0. When applying to HRC
the same τs value from the thermodynamic limit of uCRC,

the scaling behavior remains consistent ∂τ h|τs+δ
τs−δ ∝ N

1
ν0 . More

details can be found in the SM [31].
Discussion. In summary, we have studied the dynamical

phase transitions in information flow with universal behav-
ior across random unitary circuits. We identified up to four
DPT points in both classical and quantum information flow:
escape, accelerate, scrambled, and recover. We studied their
dependence on the model configuration, uncovering the light-
cone structure of information propagation. The accelerate and
recover points show new stages of propagation other than
ballistic and scrambling behavior. The quantum circuit ansatz
we focused on already encompasses a broad range of quantum
systems. The potential for similar behavior in generic systems,
especially those governed by Hamiltonian dynamics, remains
an area of great interest. Although we discussed the DPTs
only from the information perspective, we expect similar DPT
behavior in other important physical quantities. The discovery
of the DPTs shall thus shed light on our understanding of
generic quantum many-body dynamics.
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