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Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay
between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In
this work, we report the first experimental demonstration of training deep quantum neural networks via the
backpropagation algorithm with a six-qubit programmable superconducting processor. In particular, we show
that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels
with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to
93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained
in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our
experimental results explicitly showcase the advantages of deep quantum neural networks, including quantum
analogue of the backpropagation algorithm and less stringent coherence-time requirement for their constituting
physical qubits, thus providing a valuable guide for quantum machine learning applications with both near-term
and future quantum devices.

Machine learning has achieved tremendous success in both
commercial applications and scientific researches over the
past decade. In particular, deep neural networks play a vital
role in cracking some notoriously challenging problems, rang-
ing from playing Go [1] to predicting protein structures [2].
They contain multiple hidden layers and are believed to be
more powerful in extracting high-level features from data than
traditional methods [3, 4]. The learning process can be fueled
by updating the parameters through gradient descent, where
the backpropagation algorithm enables efficient calculations
of gradients via the chain rule [3].

By harnessing the weirdness of quantum mechanics such
as superposition and entanglement, quantum machine learn-
ing approaches hold the potential to bring advantages com-
pared with their classical counterpart. In recent years, excit-
ing progress has been made along this interdisciplinary direc-
tion [5–10]. For example, rigorous quantum speedups have
been proved in classification models [11] and generative mod-
els [12] with complexity-theoretic guarantees. In terms of
the expressive power for quantum neural networks, there is
also preliminary evidence showing their advantages over the
comparable feedforward neural networks [13]. Meanwhile,
noteworthy progress has also been made on the experimental
side [14–22]. For examples, in Ref. [14], the authors realize a
quantum convolutional neural network on a superconducting
quantum processor. In Ref. [15], an experimental demonstra-
tion of quantum adversarial learning has been reported. Sim-
ilar to deep classical neural networks with multiple layers,
a deep quantum neural network (DQNN) with the layer-by-
layer architecture is proposed [23, 24], which can be trained
via a quantum analog of the backpropagation algorithm. Un-
der this framework, the quantum analog of a perceptron is a
general unitary operator acting on qubits from adjacent layers,
whose parameters are updated by multiplying the correspond-
ing updating matrix of the perceptron in the training process.

In this paper, we report the first experimental demonstra-

tion of training DQNNs through the backpropagation algo-
rithm on a programmable superconducting processor with six
frequency-tunable transmon qubits. We find that a three-layer
DQNN can be efficiently trained to learn a two-qubit target
quantum channel with a mean fidelity up to 96.0% and the
ground state energy of molecular hydrogen with an accuracy
up to 93.3% compared to the theoretical prediction. In ad-
dition, we also demonstrate that a six-layer DQNN can effi-
ciently learn a one-qubit target quantum channel with a mean
fidelity up to 94.8%. Our approach can carry over to other
DQNNs with a larger width and depth straightforwardly, thus
paving a way towards large-scale quantum machine learning
with potential advantages in practical applications.

As sketched in Fig. 1(a), our DQNN has a layer-by-layer
structure, and maps the quantum information layerwise from
the input layer state ρin, through L hidden layers, to the output
layer state ρout. Quantum perceptrons are the building blocks
of the DQNN. As shown in Fig. 1(b), a single quantum per-
ceptron is defined as a parameterized quantum circuit applied
to the corresponding qubit pair at adjacent layers, which is
directly implementable in experiments. A sequential combi-
nation of the quantum perceptrons constitutes the layerwise
operation between adjacent layers. One of the key character-
istics of the DQNN is the layer-by-layer quantum state map-
ping, allowing efficient training via the quantum backprop-
agation algorithm [23]. We sketch the general experimental
training process in Fig. 1(c). When performing the quantum
backpropagation algorithm, one only requires the information
from adjacent two layers, rather than the full DQNN, to eval-
uate the gradients with respect to all parameters at these two
layers. Such a backpropagation-equipped DQNN bears the
following merit: it significantly reduces the requirements for
the ability to maintain many coherent qubits, since qubits in
each layer only need to keep their coherence for no more
than the duration of two-layer operations regardless of the
depth of the DQNN. This advantage makes it possible to real-
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Fig. 1. A schematic of training deep quantum neural networks. (a), Architecture exhibition of a general DQNN. Information propagates
layerwise from the input layer to the output layer. At adjacent two layers, we apply the quantum perceptron in the order according to the
exhibited circuit in (b). A quantum perceptron is realized by applying two single-qubit rotation gates Rx(θ1) and Rx(θ2) (the rotations along
the x axis with variational angles θ1 and θ2, respectively) followed by a fixed two-qubit controlled-phase gate. (c), Illustration of the quantum
backpropagation algorithm. We apply forward channels E on ρin and successively obtain {ρ1, ρ2 . . . ρout}, and apply backward channels F to
successively obtain {σout, σL . . . σ1} in the backward process. These forward and backward terms are used for the gradient evaluation. (d),
Exhibition of a quantum processor with six superconducting transmon qubits, which are used to experimentally implement the DQNNs. The
transmon qubits (Q1-Q6) are marked in red and the bus resonators (B1 and B2) are marked in green.

ize DQNNs with reduced number of layers of qubits through
qubit reusing [23].

Our experiment is carried out on a superconducting
quantum processor, which possesses six two-junction and
frequency-tunable transmon qubits [25–32]. As photographed
in Fig. 1(d), the chip is fabricated with the layout of the qubits
being purposely and carefully optimized for a layer-by-layer
structure. Each transmon qubit is coupled to an individual flux
control line, XY control line, and quarter-wavelength read-
out resonator, respectively. All readout resonators are coupled
to a common transmission line, which is connected through
a Josephson parametric amplifier for high-fidelity single-shot
readout of the qubits [33, 34]. In order to implement the two-
qubit gates in the quantum perceptrons, two separate half-
wavelength bus resonators are respectively used to mediate
the interactions among the qubits between layers [16, 35, 36].
The detailed experimental setup and device parameters can be
found in Supplementary Information.

We first consider using DQNNs to learn a two-qubit quan-

tum channel. We experimentally implement a three-layer
DQNN with two qubits in each layer. This three-layer DQNN
is denoted by DQNN1. Here, we choose |00〉, |01〉, |++〉,
and |+i+ i〉 as our input states ρin

x , where the subscript x =
1, 2, 3, 4 is the labeling, |0〉 and |1〉 are the eigenstates of Pauli
Z matrix, |+〉 (|−〉) is the eigenstate of Pauli X matrix, and
| + i〉 is the eigenstate of Pauli Y matrix. The four pairs of(
ρin
x , τ

out
x

)
serve as the training dataset, where τ out

x is the corre-
sponding desired output state produced by the target quantum
channel. We learn the target quantum channel by maximiz-
ing the mean fidelity between τ out

x and the measured DQNN
output ρoutx averaged over all four input states. The general
training procedure goes as follows: 1) Initialization: we ran-
domly choose the initial gate parameters θ for all perceptrons
in DQNN1. 2) Forward process (implemented on our quantum
processor): for each training sample

(
ρin
x , τ

out
x

)
, we prepare

the input layer to ρin
x , then apply layerwise forward channels

E1 and Eout, and extract ρ1x and ρout
x successively by carrying

out quantum state tomography [37]. 3) Backward process (im-
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Fig. 2. Experimental results for learning a two-qubit quantum
channel. We train the three-layer DQNN1 with 30 different ini-
tial parameters, and plot the mean fidelity as a function of training
epochs for 10 of them for clarity. The upper left inset shows the dis-
tribution of the converged mean fidelities of these 30 different initial
parameters. We choose one of the learning curves (marked with dark
blue triangles), then randomly generate 100 different input quantum
states, and test the fidelity between their output states given by the
target quantum channel and the trained (untrained) DQNN1. In the
lower left inset, the green (purple) curve shows the distribution of
the fidelities for the trained (untrained) DQNN1. The right inset is
a schematic illustration of DQNN1. At adjacent layers, we apply
the quantum perceptrons in the order indicated with the colors: red,
yellow, blue, and purple.

plemented on a classical computer): we initialize the output
layer to σout

x , which is determined by ρoutx and τoutx (see Sup-
plementary Note 1), and then apply backward channels Fout

and F1 on σout
x to successively obtain σ1

x and σ0
x. 4) Based

on {
(
ρl−1x , σlx

)
}, we evaluate the gradient of the fidelity with

respect to all the variational parameters in the adjacent layers
l − 1 and l. Then we take the average over the whole training
dataset for the final gradient, which is used to update the vari-
ational parameters θ. 5) Repeat 2), 3), 4) for s0 rounds. The
pseudocode for our algorithm is provided in Supplementary
Note 1.

In Fig. 2, we randomly choose 30 different initial parame-
ters θ, and then train DQNN1 to learn the same target quan-
tum channel. We observe that DQNN1 converges quickly dur-
ing the training process, with the highest fidelity above 96%.

Compared with the numerical simulation results (see Supple-
mentary Note 2), the deviation of the final converged fidelities
is due to experimental imperfections, including qubit decoher-
ence and residual ZZ interactions between qubits [38–40]. In
the upper left inset of Fig. 2, we show the distribution for all
the converged fidelities from these 30 repeated experiments.
We expect that the distribution will concentrate to a higher
fidelity for improved performance of the quantum processor.

To evaluate the performance of DQNN1, we choose one
training process from the 30 experiments, and refer the
DQNN1 with parameters corresponding to the ending (start-
ing) epoch of the training curve as the trained (untrained)
DQNN1. We generate other 100 different input quantum
states and experimentally measure their corresponding output
states produced by the trained (untrained) DQNN1. We test
the fidelity between output states given by the target channel
and the trained (untrained) DQNN1. As shown in the lower
left inset of Fig. 2, for the trained DQNN1, 43% of the fi-
delities exceed 0.95 (green curve) and 95% of the fidelities
are higher than 0.9, which separate away from the distribution
of the results of the untrained DQNN1 (purple curve). This
contrast illustrates the effectiveness of the training process of
DQNN1.

Another application of DQNNs is learning the ground state
energy of a given Hamiltonian H by minimizing the energy
estimate tr (ρoutH) for the output state of the DQNN. Here we
aim to learn the ground state energy of the molecular hydrogen
Hamiltonian [41]. By exploiting the Bravyi-Kitaev transfor-
mation and certain symmetry, the Hamiltonian of molecular
hydrogen can be reduced to the effective Hamiltonian acting
on two qubits: ĤBK = g0I + g1Z0 + g2Z1 + g3Z0Z1 +
g4Y0Y1 + g5X0X1, where Xi, Yi, Zi are Pauli operators on
the i-th qubit, and coefficients gj (j = 0, · · · , 5) depend on
the fixed bond length of molecular hydrogen. We consider
the bond length 0.075 nm in this work and the corresponding
coefficients gi can be found in Ref. [41].

We use DQNN1 again as the variational ansatz to learn the
ground state of molecular hydrogen with the following proce-
dure, similar to the previous one of learning a quantum chan-
nel: 1) Initialization: we prepare the input layer to the fiducial
product state |00〉, and randomly generate initial gate param-
eters θ for DQNN1. 2) In the forward process (implemented
on the quantum processor), we apply forward channels E1 and
Eout in succession, and extract quantum states of the hidden
layer (ρ1) and the output layer (ρout) by quantum state tomog-
raphy. 3) In the backward process (implemented on a clas-
sical computer), we initialize the quantum state of the output
layer to σout, and then obtain σ1 and σ0 after successively
applying backward channels Fout and F1 on σout. 4) Based
on {

(
ρl−1, σl

)
}, we calculate the gradient of the energy esti-

mate with respect to all the variational parameters in the adja-
cent layers l − 1 and l, and then update all gate parameters in
DQNN1. 5) Repeat 2), 3), 4) for s0 rounds. The pseudocode
for our algorithm is provided in Supplementary Note 1.

We train DQNN1 with 30 different initial parameters and
show our experimental results in Fig. 3(a). We observe that
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Fig. 3. Experimental and numerical results for learning the ground state energy of molecular hydrogen. (a), Experimental energy
estimate at each epoch during the learning process for different initial parameters. The inset displays the distribution of converged energy
estimates of 30 different initial parameters. (b), Numerical results for the mean energy estimates with different coherence times and residual
ZZ interaction strengths between qubits. Specifically, we adjust both the energy relaxation time and the dephasing time with the same ratio
(T/T0), where T and T0 are the coherence times in the simulation and the experiment respectively, and vary the residual ZZ interaction
strengths.

DQNN1 converges within 20 epochs. The lowest ansatz en-
ergy estimate reaches below −1.727 (hartree) in the learning
process, with an accuracy up to 93.3% compared to the the-
oretical value of the ground state energy −1.851 (hartree).
This shows the good performance of DQNN1 and the accu-
racy of our experimental system control. The inset of Fig. 3(a)
shows the distribution of all the converged energy from these
30 repeated experiments with different initial parameters, six
of which have an accuracy above 90%.

To numerically investigate the effects of experimental im-
perfections on training DQNNs, we consider two possible
sources of errors: decoherence of qubits and residual ZZ in-
teractions between qubits. Taking into consideration these er-
rors, we numerically train DQNN1 with 30 different initial
parameters. We find that for four of these initial parameters
DQNN1 converges to local minima instead of the global min-
imum, which is also observed in the experiment as shown in
the inset of Fig. 3(a). Excluding these abnormal instances with
local minima, we plot the average energy estimate as a func-
tion of the strength of the residual ZZ interaction with differ-
ent coherence times in Fig. 3(b). We find that the increase of
the coherence time around the experimental value has a minor
effect on learning the ground state energy, while the reduction
of the residual ZZ interactions provides larger improvements
of the ground state energy estimation. These experimental
imperfections can be suppressed after introducing advanced
technologies in the design and fabrication of better supercon-
ducting quantum circuits, such as tunable couplers [42–44]

and tantalum based qubits [45, 46].

To further illustrate the efficiency of the quantum backprop-
agation algorithm, we construct another DQNN with four hid-
den layers (denoted as DQNN2) by rearranging our six-qubit
quantum processor into a six-layer structure, with one qubit
respectively in each layer. We focus on the task of learning a
one-qubit quantum channel. We choose |0〉, |1〉, |−〉 as our in-
put states and compare the measured output states of DQNN2

with the desired ones from the target single-qubit quantum
channel. The general training procedure is similar as in train-
ing DQNN1 discussed above. Our experimental results are
summarized in Fig. 4, which shows the learning curves for 10
different initial parameters. We find that DQNN2 can learn the
target quantum channel with a mean fidelity up to 94.8%. We
notice that the variance among the converged mean fidelity
in DQNN2 is smaller than that for DQNN1, which may be
attributed to the smaller total circuit depth and thus less error
accumulation due to experimental imperfections. To study the
learning performance, we choose one of these learning curves
(marked in triangles), and refer DQNN2 with parameters cor-
responding to the ending (starting) epoch of the learning curve
as the trained (untrained) DQNN2. We then use other 100 dif-
ferent input quantum states to test the trained and untrained
DQNN2 by measuring the fidelities between the experimen-
tal output states and the corresponding desired ones given by
the target quantum channel. As shown in the upper inset of
Fig. 4, the fidelity distribution concentrates around 0.92 for
the trained DQNN2, which stands in stark contrast to that of
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Fig. 4. Experimental results for learning a one-qubit quantum
channel. The mean fidelity of training the six-layer DQNN2 is plot-
ted as the function of training epochs for different initial parameters.
We randomly generate 100 different single-qubit states, and evalu-
ate the fidelities between their output states produced by DQNN2

and their desired output states given by the target quantum channel.
The upper inset displays the distribution in two cases: a well-trained
DQNN2 (green) and an untrained (purple) DQNN2, both are defined
with the learning curve marked in triangles. The lower inset is a
schematic illustration of DQNN2, where we apply the perceptrons in
the order indicated by the direction of the arrows.

the untrained DQNN2 and thus indicates a good performance
after training.

In summary, we have demonstrated the training of deep
quantum neural networks on a six-qubit programmable su-
perconducting quantum processor. We experimentally exhibit
its intriguing ability to learn quantum channels and learn the
ground state energy of a given Hamiltonian. The quantum
backpropagation algorithm demonstrated in our experiments
can be directly applied to DQNNs with extended widths and
depths. This approach significantly reduces the requirements
for the coherence time of superconducting qubits, regardless
of how many hidden layers DQNNs include. With further im-
provements in experimental conditions, the quantum percep-
trons in our DQNNs can be constructed with deeper circuits
to improve the expressive capacity, which allows DQNNs to
tackle more challenging tasks in the future.

Methods
Framework. We consider a deep quantum neural network
(DQNN) that includes L hidden layers with a total number

ml of qubits in layer l. The qubits in two adjacent layers
are connected with quantum perceptrons and each perceptron
consists of two single-qubit rotation gates Rx(θ1) and Rx(θ2)
along the x axis with variational angles θ1 and θ2, respec-
tively, followed by a fixed two-qubit controlled-phase gate.
The unitary of the quantum perceptron that acts on the i-th
qubit at layer l − 1 and the j-th qubit at layer l in the DQNN
is written as U l(i,j)(θ

l
(i,j),1, θ

l
(i,j),2). Then the unitary product

of all quantum perceptrons acting on the qubits in layers l− 1
and l is denoted as U l =

∏1
j=ml

∏1
i=ml−1

U l(i,j). The DQNN
acts on the input state ρin and produces the output state ρout

according to

ρout ≡ trin,hid
(
U
(
ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|

)
U†
)
, (1)

where U ≡ U outULUL−1 . . . U1 is the unitary of the DQNN,
and all qubits in the hidden layers and the output layer are ini-
tialized to a fiducial product state |0 · · · 0〉. The characteristic
of the layer-by-layer architecture enables ρout to be expressed
as a series of maps on ρin:

ρout = Eout (EL (. . . E2 (E1 (ρin)) . . .)) , (2)

where E l
(
ρl−1

)
≡ trl−1

(
U l
(
ρl−1 ⊗ |0 · · · 0〉l〈0 · · · 0|

)
U l
†
)

is the forward quantum channel.
In Supplementary Information, we prove that for the two

machine learning tasks in our work, the derivative of the
mean fidelity or the energy estimate with respect to θl(i,j),k
can be calculated with the information of layers l − 1 and
l, which can be written as G(θl, ρl−1, σl) with θl incor-
porating all parameters in layers l − 1 and l. We note
that ρl−1 = E l−1

(
. . . E2

(
E1
(
ρin
))
. . .
)

refers to the quan-
tum state in layer l − 1 in the forward process, and σl =
F l+1 (. . .Fout (· · · ) . . .) represents the backward term in
layer l with F l being the adjoint channel of E l.

Generating random input quantum states. To evaluate the
learning performance in the task of learning a target quantum
channel, we need to generate many different input quantum
states and test the fidelity between their output states produced
by DQNN1 and their desired output states given by the target
quantum channel.

For the task of learning a two-qubit quantum channel, we
generate these input quantum states by separately applying
single-qubit rotation gates Ra1(Ω1) ⊗ Ra2(Ω2) on the two
qubits initialized in |00〉. Here each rotation gate has a ran-
dom rotation axis ai in the x-y plane and a random rotation
angle Ωi.

For the task of learning a one-qubit quantum channel, we
generate the input quantum states by applying single-qubit ro-
tation gates Rb(Φ) on the input qubit initialized in |0〉 with a
random rotation axis b in the x-y plane and a random rotation
angle Φ.

Data availability The data for experimental re-
sults presented in the figures is provided in https:

https://github.com/luzd19/Deep-quantum-neural-networks_equipped-with-backpropagation
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//github.com/luzd19/Deep-quantum-neural-networks_
equipped-with-backpropagation

Code Availability The codes for numerical simu-
lations and the numerical results are available at
https://github.com/luzd19/Deep-quantum-neural-networks_
equipped-with-backpropagation
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Supplementary Information: Deep quantum neural networks equipped with backpropagation on a
superconducting processor

SUPPLEMENTARY NOTE 1: THEORETICAL DETAILS FOR DEEP QUANTUM NEURAL NETWORKS

In classical machine learning, deep neural networks are characterized by the ability to extract high-level features from data.
With the rapid development in quantum machine learning [5–9], we expect a quantum generalization of a deep neural network
architecture to bring promising insights. Recently, a deep quantum neural network (DQNN) and a quantum analog of the
backpropagation algorithm have been proposed [23]. In this ansatz, the quantum analog of a perceptron is a unitary operation
which acts on qubits in two adjacent layers. During the training process, the unitary operator of a quantum perceptron is updated
by multiplying the corresponding updating matrix.

In this paper, we experimentally demonstrate the training of parameterized DQNNs with a superconducting quantum proces-
sor. Equipped with the backpropagation algorithm, we can efficiently calculate the gradients during the training process. Our
scheme is feasible for the experimental implementation in the noisy intermediate scale quantum era. In this section, we will
introduce the basic structures, optimization strategies, and training procedures for DQNNs.

Basic structures

As mentioned in the main text, our DQNNs have layer-by-layer structures, and qubits in two adjacent layers are connected
with the quantum perceptrons. In our ansatz, the quantum perceptrons are engineered as parameterized quantum circuits. For
simplicity in this paper, we consider that each quantum perceptron acts on only two qubits in two adjacent layers. The circuit
structure of a quantum perceptron is composed of two single-qubit rotation gates Rx(θ1) and Rx(θ2) with θ1 and θ2 as the
variational parameters, followed by a fixed two-qubit controlled-phase gate, which is shown in Fig. 1(b) in the main text. A
sequential combination of the quantum perceptrons constitutes the layer-by-layer transition mapping between adjacent layers.
In this way, the DQNN maps the information layerwise from the input layer to the output layer through hidden layers.

Now we consider a DQNN including L hidden layers. The total number of qubits in layer l is denoted as ml. The unitary of
a quantum perceptron which acts on the i-th qubit at layer l − 1 and the j-th qubit at layer l is written as U l(i,j)(θ

l
(i,j),1, θ

l
(i,j),2),

where θl(i,j),k (k = 1, 2) denote the variational parameters of the two Rx gates in the quantum perceptron U l(i,j). The unitary
product of all quantum perceptrons acting on the qubits in layers l − 1 and l is denoted as:

U l =

1∏
j=ml

1∏
i=ml−1

U l(i,j).

We note that qubits in layer l are initialized to a fiducial product state |0 · · · 0〉, and then the quantum state ρl of the qubits in
layer l can be written as the layer-by-layer transition mapping on ρl−1:

ρl = E l
(
ρl−1

)
≡ trl−1

(
U l
(
ρl−1 ⊗ |0 · · · 0〉l〈0 · · · 0|

)
U l
†
)
. (S1)

In this way, the output state ρout can be expressed as a series of maps on ρin:

ρout = Eout (EL (. . . E2 (E1 (ρin)) . . .)) . (S2)

Optimization strategies

With the basic structures discussed above, now we can specify the learning tasks. In this paper, we consider two machine
learning tasks. The first task is learning a target quantum channel. We expect the output state given by the DQNN to be as close
as possible to the output state given by the target quantum channel for each input state. We aim to maximize the mean fidelity
between output states given by the DQNN (ρout

x ) and the target quantum channel (τ out
x ) averaged over N training data:

F =
1

N

N∑
x=1

Fx(ρout
x , τ

out
x ) =

1

N

N∑
x=1

[
tr

√√
τ out
x ρout

x

√
τ out
x

]
.
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The second task is learning the ground state of a Hamiltonian H . We aim to minimize the energy estimate Ē of this Hamiltonian
computed with the DQNN output state ρout:

Ē = tr
(
ρoutH

)
.

To maximize the mean fidelity or minimize the energy estimate, we adapt the gradient descent method. In the main text, we
mention that our DQNNs with the layer-by-layer architecture allow the quantum backpropagation algorithm. Via this algorithm,
one only requires the information from two adjacent layers to calculate the gradients with respect to all gate parameters at these
two layers. In other words, the derivative of the mean fidelity or the energy estimate with respect to θl(i,j),k can be written as
G(θl, ρl−1, σl), where θl incorporates all gate parameters in layers l − 1 and l.

Here, we derive the formula for G(θl, ρl−1, σl). We first consider a function f with the form f(ρout, X) = tr(Xρout), where
X is a Hermitian matrix related to specific tasks. The derivative of f with respect to θl(i,j),k can be expressed as:

∂f(ρout, X)

∂θl(i,j),k
= G(θl, ρl−1, σl)

= tr

(
∂U l

∂θl(i,j),k

(
ρl−1 ⊗ |0〉l〈0|

)
U l
†
(
Il−1 ⊗ σl

))
+ h.c.,

(S3)

where h.c. stands for the Hermitian conjugate of the preceding terms. We show the proof as follows:

Proof.

∂f(ρout, X)

∂θl(i,j),k
= G(θl, ρl−1, σl) = tr

(
∂ρout

∂θl(i,j),k
X

)
= tr

((
trin,hidden

(
U out . . . U l+1 ∂U l

∂θl(i,j),k
U l−1 . . . U1ρin ⊗ |0 · · · 0〉hid,out 〈0 · · · 0| U

†
)

+ h.c.
)
X

)
= tr

((
U out . . . U l+1 ∂U l

∂θl(i,j),k
U l−1 . . . U1ρin ⊗ |0 · · · 0〉hid,out 〈0 · · · 0| U

†
)
·
(
Iin,hidden ⊗X

))
+ h.c.

= tr

(
∂U l

∂θl(i,j),k
U (l−1) . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† . . . U (l−1)†

U (l)†U (l+1)† . . . U out†
(
Iin,hidden ⊗X

)
U out . . . U (l+1)

)
+ h.c.

= tr

(
∂U l

∂θl(i,j),k

(
trl,...out (T1)⊗ |0 · · · 0〉l,...,out〈0 · · · 0|

)
U l
†
(
I0,...,l−1 ⊗ tr0,...l−1 (T2)

))
+ h.c.

= tr

((( ∂U l

∂θl(i,j),k

(
trl,...out (T1)⊗ |0〉l〈0|

)
U l
†
)
⊗ Il+1,...out

)
(
I0,...l ⊗ |0〉l+1,...out〈0|

)(
I0,...l−1 ⊗ tr0,...l−1 (T2)

))
+ h.c.

= tr

((( ∂U l

∂θl(i,j),k

(
ρl−1 ⊗ |0〉l〈0|

)
U l
†
)
⊗ Il+1,...out

)(
Il−1,l ⊗ |0〉l+1,...out〈0|

)(
Il−1 ⊗ tr0,...l−1 (T2)

))
+ h.c.

= tr

(
∂U l

∂θl(i,j),k

(
ρl−1 ⊗ |0〉l〈0|

)
U l
†
(
Il−1 ⊗ σl

))
+ h.c.,

where U ≡ U outULUL−1 . . . U1. We use the shorthands T1 = U (l−1) . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† . . . U (l−1)† , and

T2 = 1/(2
∑ml−1

i=m0 )U (l+1)† . . . U out† (Iin,hidden ⊗X)U out . . . U (l+1). We define ρl−1 = tr1,...,l−2,l,...,out (T1) as the quantum
states of the qubits in layer l − 1 in the forward process, and σl = trl+1,...,out ((Il ⊗ |0 · · · 0〉l+1,...,out〈0 · · · 0|) · tr1,...,l−1 (T2))
as the backward term in layer l. From this formula we obtain the recursive relation between σl−1 and σl:

σl−1 = F l(σl) = trl

(
(Il−1 ⊗ |0〉l〈0|)U l

† (
Il−1 ⊗ σl

)
U l
)
, (S4)
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where F l is the adjoint channel of E l, and σout = X . From this recursive relation, we can obtain the backward terms layerwise
from the output layer to the input layer in the backward process.

Specially, if the gate with parameter θl(i,j),k in the DQNN is of the form e−
i
2 θ

l
(i,j),kPn with Pn belonging to the Pauli group,

we can utilize the “parameter shift rule” to calculate the gradient of f :

∂f(ρ, σ)

∂θl(i,j),k
= G(θl, ρl−1, σl) =

1

2
(h+ − h−), (S5)

where h± = tr
(
U l±
(
ρl−1 ⊗ |0〉l〈0|

)
U l
†

±
(
Il−1 ⊗ σl

))
, and U l± denotes the unitary that replaces the parameter θl(i,j),k in U l

with θl(i,j),k ±
π
2 . We show the proof as follows:

Proof.

2 · ∂f(ρout, X)

∂θl(i,j),k
= 2 ·G(θl, ρl−1, σl) = 2 · tr

(
∂ρout

∂θl(i,j),k
X

)

= tr

((
trin,hidden

(
U out . . . U l+1U l+U

l−1 . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† · · ·U l
†

+ · · ·U out†
))

X

)

− tr

((
trin,hidden

(
U out . . . U l+1U l−U

l−1 . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† · · ·U l
†

− · · ·U out†
))

X

)
.

Now we prove the first term equals to h+. In the same way, we can prove the second term equals to h−. The first term can be
written as:

tr

((
trin,hidden

(
U out . . . U l+1U l+U

l−1 . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† · · ·U l
†

+ · · ·U out†
))

X

)

= tr

((
U out . . . U l+1U l+U

l−1 . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† · · ·U l
†

+ · · ·U out†
)(

Iin,hidden ⊗X
))

= tr

(
U l+U

(l−1) . . . U1ρin ⊗ |0 · · · 0〉hid,out〈0 · · · 0|U1† . . . U (l−1)†U l
†

+U
(l+1)† . . . U out†

(
Iin,hidden ⊗X

)
U out . . . U (l+1)

)
= tr

(
U l+

(
trl,...out (T1)⊗ |0 · · · 0〉l,...out〈0 · · · 0|

)
U l
†

+

(
I0,...l−1 ⊗ tr0,...l−1 (T2)

))
= tr

(((
U l+ (trl,...out (T1)⊗ |0〉l〈0|)U l

†

+

)
⊗ Il+1,...out

)(
I0,...l ⊗ |0〉l+1,...out〈0|

)
(
I0,...l−1 ⊗ tr1,...l−1 (T2)

))

= tr

(((
U l+ (ρl−1 ⊗ |0〉l〈0|)U l

†

+

)
⊗ Il+1,...out

)(
Il−1,l ⊗ |0〉l+1,...out〈0|

)(
Il−1 ⊗ tr0,...,l−1 (T2)

))
= tr

(
U l+ (ρl−1 ⊗ |0〉l〈0|)U l

†

+ (Il−1 ⊗ σl)
)

= h+.

With the gradients of f obtained above, we need to derive the gradients of the mean fidelity F and the energy estimate Ē
in the two tasks that are discussed in the main text. In the task of learning a target quantum channel, for each input state, we
consider the derivative of Fx with respect to θl(i,j),k. For convenience, we omit the superscript and subscript of Fx, ρout

x , and

τ out
x , and use the shorthand A = τ1/2ρτ1/2, B =

√
A, then

∂F

∂θl(i,j),k
= tr

(
∂B

∂θl(i,j),k

)
.
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Now, we further omit the superscript and subscript of θl(i,j),k.

∂A

∂θ
=
∂
(
B2
)

∂θ
= B · ∂B

∂θ
+
∂B

∂θ
·B ⇒ ∂A

∂θ
·B−1 = B · ∂B

∂θ
B−1 +

∂B

∂θ
,

hence,

tr

(
∂A

∂θ
·B−1

)
= tr

(
B · ∂B

∂θ
B−1

)
+ tr

(
∂B

∂θ

)
= tr

(
∂B

∂θ
B−1B

)
+ tr

(
∂B

∂θ

)
= 2 tr

(
∂B

∂θ

)
.

This yields

∂F

∂θ
=

1

2
tr

(
∂A

∂θ
·B−1

)
=

1

2
tr

(
τ1/2

∂ρ

∂θ
τ1/2 ·B−1

)
=

1

2
tr

(
∂ρ

∂θ
· τ1/2B−1τ1/2

)
,

which has the same form as the derivative of tr(ρoutX) with τ1/2B−1τ1/2 analogous to X . In the task of learning the ground
state energy of a HamiltonianH , the energy estimate tr (ρoutH) has the same form as tr (ρoutX), whereH is analogous toX . So
we can derive the gradients of the energy estimate Ē according to G(θl, ρl−1, σl). With the gradients obtained, we can update
the variational parameters in the DQNN by gradient descent methods.

Training procedures

In this section, we give a detailed description of how our DQNNs are trained via the quantum backpropagation algorithm for
different tasks.

For the task of learning a quantum channel, first we need to generate the training dataset. Here, we randomly choose
parameters θt in the DQNN to generate a specific target quantum channel that we aim to learn. Then we apply the target
quantum channel on each input state to obtain the corresponding output state to constitute the training dataset {

(
ρin
x , τ

out
x

)
}Nx=1

with N being the size of the training dataset. We assume the DQNN used in this task includes L hidden layers with a total
number ml of qubits in layer l. Now we describe the general training procedure as follows:

1. Initialization:
Randomly choose initial gate parameters for all perceptrons in the DQNN, which is denoted as θI .

2. Forward process:
For each training data {

(
ρin
x , τ

out
x

)
}, apply forward channels E1, E2,. . ., Eout on ρin

x to obtain ρ1x, ρ
2
x, . . . , ρ

out
x successively .

Forward channel E l : According to the main text, the forward channel E l applies on qubits in layer l− 1 of the quantum
state ρl−1, and produces ρl in layer l according to ρl = E l

(
ρl−1

)
≡ trl−1

(
U l
(
ρl−1 ⊗ |0 · · · 0〉l〈0 · · · 0|

)
U l
†
)

. In our
experiment, we prepare ml qubits in layer l to the fiducial product state |0 · · · 0〉 at first. Then we apply all quantum
perceptrons acting on qubits in layers l − 1 and l. Finally, we carry out quantum state tomography to extract ρl.

3. Backward process:
For each training data {

(
ρin
x , τ

out
x

)
}, calculate σout = (τ out

x )1/2((τ out
x )1/2ρout

x (τ out
x )1/2)−1/2(τ out

x )1/2, and then apply
backward channels Fout, FL,. . ., F1 on σout to successively obtain σLx , σ

L−1
x , . . . , σ0

x .

Backward channel F l : The backward channel F l applies on backward term σl and produces σl−1 according to σl−1 =

F l(σl) = trl

(
(ρl−1 ⊗ |0〉l〈0|)U l

† (Il−1 ⊗ σl)U l). In this paper, we carry out the backward channel on a classical

computer due to the experimental challenges in preparing the quantum states for the backward terms σl. We expect an
efficient proposal for the experimental implementation of the backward process, which is important and remains as a future
work.

4. Evaluate the mean fidelity and the gradients:
Compute the mean fidelity:

F =
1

N

N∑
x=1

Fx(ρout
x , τ

out
x ) =

1

N

N∑
x=1

[
tr

√√
τ out
x ρout

x

√
τ out
x

]
.
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Calculate the gradient with respect to θl(i,j),k for each training data: ∂Fx(ρ
out
x ,τ

out
x )

∂θl
(i,j),k

= G(θl, ρl−1x , σlx), and then take the

average over the whole training dataset: 1
N

∑N
x=1G(θl, ρl−1x , σlx). Finally, update each θl(i,j),k with the learning rate ε

according to

θl(i,j),k → θl(i,j),k + ε ∗ 1

N

N∑
x=1

G(θl, ρl−1x , σlx).

5. Repeat 2, 3 and 4 for s0 steps.

We summarize the pseudocode in Algorithm 1.

Algorithm 1 Training the DQNN for learning quantum channels via the quantum backpropagation algorithm
Input The DQNN model with L hidden layers, initial parameters θI , input quantum states {

(
ρin
x

)
}Nx=1, iteration steps s0 , learning rate ε,

Output The trained DQNN
Generate the training dataset: choose parameters θt for the DQNN, which serves as the target quantum channel, and then apply it to each
input state to obtain the corresponding output state, which constitute the training dataset {

(
ρin
x , τ

out
x

)
}Nx=1 .

for s = 1 to s0 do
Forward: for each training data {

(
ρin
x , τ

out
x

)
}, apply forward channels E1, E2,. . ., Eout on ρin

x to obtain ρ1
x, ρ

2
x, . . . , ρ

out
x successively .

Backward: for each training data {
(
ρin
x , τ

out
x

)
}, calculate σout = (τ out

x )1/2((τ out
x )1/2ρout

x (τ out
x )1/2)−1/2(τ out

x )1/2, and then apply backward
channels Fout, FL,. . ., F1 on σout to successively obtain σLx , σL−1

x , . . . , σ0
x .

Gradients: calculate the gradient with respect to θl(i,j),k for each training data: ∂Fx(ρout
x ,τout

x )

∂θl
(i,j),k

= G(θl, ρl−1
x , σlx), and then take the

average over the whole training dataset: 1
N

∑N
x=1 G(θl, ρl−1

x , σlx).
Update: update each θl(i,j),k according to θl(i,j),k → θl(i,j),k + ε ∗ 1

N

∑N
x=1 G(θl, ρl−1

x , σlx).
end for
Output the trained DQNN

For the task of learning the ground state energy of a Hamiltonian H , we provide the pseudocode in Algorithm 2.

Algorithm 2 Training the DQNN for learning the ground state for some Hamiltonian via the quantum backpropagation algorithm
Input The DQNN model with L hidden layers, initial parameters θI , Hamiltonian H , iteration steps s0 , learning rate ε.
Output The trained DQNN

for s = 1 to s0 do
Forward: apply forward channels E1, E2,. . ., Eout on initial fiducial product state |0 · · · 0〉 to obtain ρ1, ρ2, . . . , ρout successively .
Backward: apply backward channels Fout, FL,. . ., F1 on σout = H to successively obtain σL, σL−1, . . . , σ0.
Gradients: calculate the gradient with respect to θl(i,j),k: ∂Ē(ρout,H)

∂θl
(i,j),k

= G(θl, ρl−1, σl) .

Update: update each θl(i,j),k according to θl(i,j),k → θl(i,j),k − ε ∗G(θl, ρl−1, σl).
end for
Output the trained DQNN

SUPPLEMENTARY NOTE 2: NUMERICAL RESULTS FOR SEVERAL MACHINE LEARNING TASKS

In this section, we simulate the training of DQNNs by realizing the forward channels and the backward channels with matrix
calculations on a classical computer, and present some numerical results.

Task: learning a two-qubit quantum channel. Here, we choose DQNN1 mentioned in the main text to learn a two-qubit
target quantum channel. The training dataset is the same as that in the main text. We numerically train DQNN1 with 50 different
initial parameters and show our numerical results in Supplementary Fig. S1. We observe that DQNN1 shows high convergence
performance, with the average converged mean fidelity above 98%.

We choose one learning curve (marked in triangles in Supplementary Fig. S1) to test the learning performance of DQNN1.
We refer DQNN1 with parameters corresponding to the ending (starting) epoch of this training curve as the trained (untrained)
DQNN1, and then use 100 different input quantum states to test the fidelities between their corresponding output states and the
desired output states given by the target quantum channel. As shown in the lower inset of Supplementary Fig. S1, for the trained
DQNN1, the mean fidelity exceeds 0.97 (green bars), which separates away from the distribution of the results of the untrained
DQNN1 (purple bars). This contrast indicates a satisfying performance of DQNN1.
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Supplementary Figure S1. Numerical results for learning a two-qubit quantum channel. The numerical results for training DQNN1 with
50 different initial parameters. We plot the mean fidelity as a function of the training epochs. The upper inset shows the distribution of the
converged mean fidelities for these 50 different initial parameters. We choose one of the learning curves (marked with triangles), and then
randomly generate 100 different input quantum states to test the fidelities between their output states given by the target quantum channel
and the trained (untrained) DQNN1. The results are displayed in the lower inset with the green (purple) bars showing the distribution of the
fidelities for the trained (untrained) DQNN1.

Task: learning the ground state of molecular hydrogen (H2). We also use DQNN1 to learn the ground state energy of
the molecular hydrogen Hamiltonian. We choose 50 different initial parameters and classically simulate the training process as
presented in the main text. The results are shown in Supplementary Fig. S2. We observe that DQNN1 converges quickly, and
the average of the mean ansatz energy estimate reaches −1.826 (hartree) when excluding two abnormal instances with local
minima, which is very close to the theoretical value −1.85 (hartree). This indicates the successful application of our model.

Task: learning a one-qubit quantum channel. We choose DQNN2 mentioned in the main text to learn a one-qubit target
quantum channel. In our simulation, the training dataset is the same as in the main text. Our numerical results for 50 different
initial parameters are summarized in Supplementary Fig. S3. We observe that DQNN2 shows high convergence performance
in the training process, with the average converged mean fidelity above 99.5%. We also choose one of these learning curves
(marked in triangles in Supplementary Fig. S3), and refer DQNN2 with parameters corresponding to the ending (starting) epoch
of the training curve as the trained (untrained) DQNN2. We then use 100 different input quantum states to test the fidelities
between their corresponding output states and the desired output states given by the target quantum channel. As shown in the
lower inset of Supplementary Fig. S3, for the trained DQNN1, the mean fidelity exceeds 0.999 (green bars), which separates
away from the distribution of the untrained DQNN2 (purple bars) with the mean fidelity below 0.4. This contrast indicates a
satisfying performance of DQNN2.
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Supplementary Figure S2. Numerical results for learning the ground state energy of molecular hydrogen. Energy estimate as a function
of the training epochs for 50 different initial parameters. The distribution of their converged energy estimates is displayed in the inset.

SUPPLEMENTARY NOTE 3: EXPERIMENTAL IMPLEMENTATION OF THE DQNN

Characterization of the quantum processor

Our experiment is performed on a six-qubit superconducting quantum processor. As shown in Fig. 1(d) in the main text, the
layout of qubits is carefully optimized to be a layer-by-layer structure. We denote these qubits as Qj , where j = 1, 2, ..., 6, and
the labels are the same as those in the main text figures. The detailed experimental wiring of qubit control lines and measurement
lines are shown in Supplementary Fig. S4. We summarize the characteristic parameters of our quantum processor in Table S1.

Synthesize the microwave control signals

Timing and microwave switch control. We note that the microwave control signals for the single-qubit gates of Q1, Q2, Q5

and Q3, Q4, Q6 are directly generated by the two DAC channels of a Tektronix AWG70002A (sampling rate 25 Gs per second),
respectively. The single-qubit gates are implemented by 40 ns pulses with Gaussian envelopes. The tunability of the parameter
θ in the DQNN is experimentally realized with a linear map between θ and the pulse amplitude. The individual addressing of
each qubit is realized with the time domain separation of the microwave drives. In order to minimize the off-resonance crosstalk
coming from the signal multiplexing, we add a fast microwave switch (activation time < 10 ns, on-off ratio > 40 dB) to each
input XY control line, and turn on the switches only when the single-qubit gates are needed to be applied to the specific qubits.

Implementation of two-qubit gates with flux modulation. To realize the controlled-phase gate in a quantum perceptron,
we adiabatically tune one of the qubit frequency to bring the |ee〉 state of the control and the target qubits into resonance with
the |gf〉 state . Then the two-qubit state undergoes a periodic evolution path based on the coupling Hamiltonian of the two
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Supplementary Figure S3. Numerical results for learning a one-qubit quantum channel. The mean fidelity is plotted as the function of
the training epochs for 50 different initial parameters. The distribution of their converged mean fidelities is displayed in the upper inset. We
choose one of the learning curves (marked with triangles), then randomly generate 100 single-qubit states, separately produce their output
states given by the target quantum channel and the well-trained (untrained) DQNN2, and finally evaluate the corresponding fidelities between
them. The distributions of the fidelities are shown in the lower inset.

qubits, leaving the population of the |ee〉 state intact, but a conditional geometric phase being accumulated in the |ee〉 state.
Such an operation is realized with a fast step pulse of the external current threading the junction loop of the qubit to modify its
frequency [47].

However, the limited bandwidth of the electronics as well as parasitic capacitances and inductances in the wiring cables lead
to the distortion of the step pulses and thus the degradation of the gate performances. We adapt the method in Ref. [48] to
mitigate this problem with the flux pulse compensation. We model the AWG response and the on-chip responses to the step
pulse as low-pass filters, and apply real-time predistortions to the step pulse for compensations. The height and duration of
the step pulse are optimized to minimize the errors in the swap process between |ee〉 and |gf〉. The comparison between the
compensated and the uncompensated flux pulses is shown in Supplementary Fig. S5. We note that the optimized gate parameters
do not necessarily lead to a conditional π phase, therefore, we just record the conditional phase φ and use it in the two-qubit
gate in the perceptron. Moreover, the flux pulse of the target qubit will generally lead to the magnetic flux change not only in the
target qubit loop, but also in other qubit loops, which causes the frequency and phase change of other qubit states. We calibrate
the single-qubit phase of each qubit during the flux pulse through quantum state tomography, and compensate the flux-induced
single-qubit phase in software by a phase shift of the following driving pulses. Based on the above implementation, the average
fidelity of the controlled-phase gates in the DQNN is around 0.95 for all qubit pairs.

Different working frequencies and phase compensation due to reference frame change. In our experiment, since the two-
qubit gate requires the frequency modulation of the qubit, it is possible that the energy level resonances other than the wanted
|ee〉 and |gf〉 hybridization could occur during the modulation process. Such unwanted resonances will lead to undesired
state swapping that degrades the gate fidelity. In order to avoid the unwanted frequency resonances, we have set the working
frequencies of the six qubits to several different configurations when executing different perceptrons in DQNN1 and DQNN2 (see
Table S2 for details). Meanwhile, the frequency changes of the qubits require additional time-dependent phase compensation.
As illustrated in Supplementary Fig. S6(a), we calibrate the time-dependent phase change of each qubit by preparing the state
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Supplementary Figure S4. The experimental wiring of qubit control lines and measurement lines. We plot one of two identical qubit XY
control lines and one of six identical qubit flux lines for simplification purpose.

Parameters / Qubit Q1 Q2 Q3 Q4 Q5 Q6

Qubit working frquency fQ (GHz) 6.413 6.363 6.328 6.453 6.083 6.191

Qubit energy relaxation time T1 (µs) 4.2 6.1 5.1 8.2 10.0 10.6

Qubit Ramsey dephasing time T2 (µs) 2.2 1.9 4.8 8.4 18.2 11.8

Qubit anharmonicity EC/2π (MHz) 194 217 206 196 207 208

Readout resonator frequency fR (GHz) 7.10 7.16 7.13 7.22 7.12 7.21

Qubit-readout-resonator coupling strength gQR/2π (MHz) 69 72 81 66 78 65

Qubit-bus-resonator1 coupling strength gQB1/2π (MHz) 0 0 36 35 37 34

Qubit-bus-resonator2 coupling strength gQB2/2π (MHz) 32 31 34 32 0 0

Internal quality factor of the readout resonator QI,R(10
3) 102 83 130 15 85 92

Coupled quality factor of the readout resonator QC,R(10
3) 20 15 20 7.6 7.4 8.0

TABLE S1. Characteristic parameters of the quantum processor.

(|g〉 + |e〉)/
√

2 with a microwave driving frequency fA when the qubit frequency is also at fA, and then apply a predistorted
step pulse in the flux control line to shift the qubit frequency to fB . A quantum state tomography of the qubit with a driving
frequency fB is performed to extract the phase accumulation caused by the frequency change. Here we fix the time interval
between the tomography pulse and the state preparation pulse, and vary the time tshift between the state preparation pulse and
the step pulse to calibrate the phase accumulation with tshift. The calibration result is shown in Supplementary Fig. S6(b). Such
a phase accumulation is also corrected in software by shifting the phases of the driving pulses after the frequency change.
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Supplementary Figure S5. The comparison between the swap operations with and without the flux compensation. With the frequencies
of all other qubits well below 5.8 GHz, we prepare Q4 and Q5 in the |eg〉 state, and take a step pulse in the flux line to modulate the frequency
of Q4 down to reach the resonance with the |ge〉 state. The modulated qubit frequency and the duration of the step pulse are varied in the
experiment. Compared with the uncompensated step pulse, the predistortion compensation method has successfully recovered the chevron
pattern of the expected |ge〉 and |eg〉 swap process.
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Supplementary Figure S6. Calibration of the single-qubit phase induced by the shift of the working frequency. (a) The experimental
pulse sequence. (b) The experimental result for the frequency shift process of Q4. The blue dots denote the probability of measuring |e〉 state
P|e〉. The blue star marks denote Pmax, which is the larger eigenvalue of the single-qubit density matrix. The near-unity values of Pmax indicate
the measured final quantum states are close to pure states. The red circles denote the phase φ extracted from the final quantum states in the
form |g〉+ eiφ |e〉. The dashed line is a linear fit to the red circles to infer the desired frequency shift.

Quantum state tomography

We extract the quantum state ρl of the qubits in each layer of the DQNN by carrying out the quantum state tomography.
To reconstruct a single-qubit state, we perform single-qubit Pauli measurements on four bases S1 = {|g〉, |e〉, |+〉, |i〉}. To
reconstruct a two-qubit state, we perform two-qubit Pauli measurements on 16 bases S2 = {|v1〉 ⊗ |v2〉; v1, v2 ∈ S1}. In our
experiment, we repeat the measurement in each basis 104 times to obtain a probability distribution ~r on the two and four
computational bases for the single-qubit and two-qubit cases, respectively. ~r is sent to a classical convex optimizer to find the
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DQNN1

Perceptron Qubits Q1 (GHz) Q2 (GHz) Q3 (GHz) Q4 (GHz) Q5 (GHz) Q6 (GHz) Time (ns) Phase

U1
1,1 Q1, Q3

6.413 6.364 6.320 6.453 < 5.8 < 5.8

62 175◦

U1
2,1 Q2, Q3 52 180◦

U1
1,2 Q1, Q4 92 180◦

U1
2,2 Q2, Q4 82 −155◦

U2
1,2 Q3, Q6

< 5.8 < 5.8

6.328

6.453 6.08 6.191

64 176◦

U2
1,1 Q3, Q5 64 −117◦

U2
2,2 Q4, Q6

< 5.8
64 −157◦

U2
2,1 Q4, Q5 60 −165◦

DQNN2

Pecerptron Qubits Q1 (GHz) Q2 (GHz) Q3 (GHz) Q4 (GHz) Q5 (GHz) Q6 (GHz) Time (ns) Phase

U1
1,1 Q1, Q3

6.413 6.364 6.320 6.453 < 5.8 < 5.8

62 175◦

U2
1,1 Q2, Q3 52 180◦

U3
1,1 Q2, Q4 82 −155◦

U4
1,1 Q4, Q6

<5.8 <5.8 < 5.8 6.453 6.08 6.191
64 −157◦

U5
1,1 Q5, Q6 60 −130◦

TABLE S2. Experimental parameters for training DQNNs. In our experiments for training DQNN1 and DQNN2, we apply the quantum
perceptrons in the order from the top to the bottom in the first column. Each perceptron acts on the qubits listed in the second column. When
applying different perceptrons, we need to set the qubits to different frequencies as listed. We also show the operation time and the rotation
angle for the controlled-phase gate in each perceptron.

density matrix ρl that produces the distribution as close as ~r.
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